Graphene- and Graphite Oxide-Reinforced Magnesium Oxychloride Cement Composites for the Construction Use

dc.contributor.authorLauermannová, Anna-Mariecs
dc.contributor.authorLojka, Michalcs
dc.contributor.authorPavlíková, Milenacs
dc.contributor.authorPivák, Adamcs
dc.contributor.authorZáleská, Martinacs
dc.contributor.authorPavlík, Zbyšekcs
dc.contributor.authorZmeškal, Oldřichcs
dc.contributor.authorJankovský, Ondřejcs
dc.coverage.issue1cs
dc.coverage.volume65cs
dc.date.accessioned2022-04-04T10:54:13Z
dc.date.available2022-04-04T10:54:13Z
dc.date.issued2021-05-23cs
dc.description.abstractGraphene and graphite oxide reinforced magnesium oxychloride cement (MOC) pastes were researched. To produce MOC pastes, the light-burnt magnesium oxide was added and dispersed in the magnesium chloride solution. The graphene powder, graphite oxide powder, and their combination were incorporated in the solution. The total amount of the nano additives was 0.5 % by the weight of the magnesium oxychloride binder. The morphology and microstructure of the hardened materials were studied using scanning electron microscopy (SEM). The phase composition of precipitated MOC-based products was investigated using X ray diffraction (XRD). The macrostructural parameters of the composites such as bulk density, specific density, and open porosity were evaluated. Mechanical strength and stiffness were analyzed by the measurement of flexural and compressive strength and dynamic elastic modulus. The electrical properties were examined by the use of impedance spectroscopy (IS). From the experimental results the model of the transport of electric charge in researched materials dispersion was estimated. The use of graphene- and graphite oxide-reinforcement of MOC matrix gave highly dense materials of low porosity, high mechanical resistance, whereas the used nano-additives enabled the produce of composites of high strength efficiency index. The addition of graphene particles and the formation of graphite agglomerates significantly decreased electrical resistivity of the MOC matrix which was originally characterized by low electrical conductivity.en
dc.formattextcs
dc.format.extent38-47cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationCERAMICS-SILIKATY. 2021, vol. 65, issue 1, p. 38-47.en
dc.identifier.doi10.13168/cs.2020.0040cs
dc.identifier.issn1804-5847cs
dc.identifier.other177262cs
dc.identifier.urihttp://hdl.handle.net/11012/204076
dc.language.isoencs
dc.publisherUniversity of Chemistry and Technology, Praguecs
dc.relation.ispartofCERAMICS-SILIKATYcs
dc.relation.urihttps://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=1388cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1804-5847/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectGrapheneen
dc.subjectCompositesen
dc.subjectMagnesium oxychloridesen
dc.subjectMultiwalled Carbon Nanotubesen
dc.subjectmetal-Ionsmechanical-Propertiesen
dc.subjectdoped Grapheneen
dc.subjectsilica Fumeen
dc.subjectadsorptionen
dc.subjectphaseen
dc.subjectwateren
dc.subjectreductionen
dc.subjecthydrationen
dc.titleGraphene- and Graphite Oxide-Reinforced Magnesium Oxychloride Cement Composites for the Construction Useen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-177262en
sync.item.dbtypeVAVen
sync.item.insts2023.02.20 16:50:37en
sync.item.modts2023.02.20 16:13:24en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav fyzikální a spotřební chemiecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lauermannova_CS_2020_0040.pdf
Size:
3.41 MB
Format:
Adobe Portable Document Format
Description:
Lauermannova_CS_2020_0040.pdf