Dynamic cell-mass movement analyses tool
Loading...
Date
Authors
Dostál, Zbyněk
Žáková, Veronika
Veselý, Pavel
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract
Background and Objective: Digital Holographic Microscopy provides a new kind of quantitative image data about live cells’ in vitro activities. Apart from non-invasive and staining-free imaging, it offers topological weighting of cell mass. This led us to develop a particular tool for assessing cell mass dynamics. Methods: Programming language Python and a training set of time-lapse images of adherent HT-1080 cells derived from human fibrosarcoma taken with dry objective 40x/0.95 at 30-second intervals were used to create the Analytical Image Differencing (AID) method. Results: The AID makes the best of these new data by evaluating the difference between the chosen two quantitative phase images from the time-lapse series. The contribution of the method is demonstrated on hiQPI (Holographic Incoherent-light-source Quantitative Phase Imaging) image data taken with a Q-phase microscope. The analysis outputs are graphical and complemented with numerical data. To underscore the significance of the Analytical Image Differencing (AID) method, an initial pilot experiment was conducted to show the available analyses of sequential overlapping images capturing the movement of cancer cells. Notably, besides defining changes in areas used by the cell (newly or steadily occupied or better abandoned) it is an introduction to the zero-line concept, which denotes spots of tranquility among continuously moving surroundings. Conclusions: The measurement of zero-line length has emerged as a novel biomarker for characterizing cell mass transfer. The sensitivity of phase change measurements is demonstrated. The noise quality of input images obtained with incoherent (hiQPI) and coherent (QPI) methods is compared. The resulting effect on the AID method output is also shown. The findings of this study introduce a novel approach to evaluating cellular behavior in vitro. The concept emerged as a particularly noteworthy outcome. Collectively, these results highlight the substantial potential of AID in advancing the field of cancer cells biology, particularly.
Background and Objective: Digital Holographic Microscopy provides a new kind of quantitative image data about live cells’ in vitro activities. Apart from non-invasive and staining-free imaging, it offers topological weighting of cell mass. This led us to develop a particular tool for assessing cell mass dynamics. Methods: Programming language Python and a training set of time-lapse images of adherent HT-1080 cells derived from human fibrosarcoma taken with dry objective 40x/0.95 at 30-second intervals were used to create the Analytical Image Differencing (AID) method. Results: The AID makes the best of these new data by evaluating the difference between the chosen two quantitative phase images from the time-lapse series. The contribution of the method is demonstrated on hiQPI (Holographic Incoherent-light-source Quantitative Phase Imaging) image data taken with a Q-phase microscope. The analysis outputs are graphical and complemented with numerical data. To underscore the significance of the Analytical Image Differencing (AID) method, an initial pilot experiment was conducted to show the available analyses of sequential overlapping images capturing the movement of cancer cells. Notably, besides defining changes in areas used by the cell (newly or steadily occupied or better abandoned) it is an introduction to the zero-line concept, which denotes spots of tranquility among continuously moving surroundings. Conclusions: The measurement of zero-line length has emerged as a novel biomarker for characterizing cell mass transfer. The sensitivity of phase change measurements is demonstrated. The noise quality of input images obtained with incoherent (hiQPI) and coherent (QPI) methods is compared. The resulting effect on the AID method output is also shown. The findings of this study introduce a novel approach to evaluating cellular behavior in vitro. The concept emerged as a particularly noteworthy outcome. Collectively, these results highlight the substantial potential of AID in advancing the field of cancer cells biology, particularly.
Background and Objective: Digital Holographic Microscopy provides a new kind of quantitative image data about live cells’ in vitro activities. Apart from non-invasive and staining-free imaging, it offers topological weighting of cell mass. This led us to develop a particular tool for assessing cell mass dynamics. Methods: Programming language Python and a training set of time-lapse images of adherent HT-1080 cells derived from human fibrosarcoma taken with dry objective 40x/0.95 at 30-second intervals were used to create the Analytical Image Differencing (AID) method. Results: The AID makes the best of these new data by evaluating the difference between the chosen two quantitative phase images from the time-lapse series. The contribution of the method is demonstrated on hiQPI (Holographic Incoherent-light-source Quantitative Phase Imaging) image data taken with a Q-phase microscope. The analysis outputs are graphical and complemented with numerical data. To underscore the significance of the Analytical Image Differencing (AID) method, an initial pilot experiment was conducted to show the available analyses of sequential overlapping images capturing the movement of cancer cells. Notably, besides defining changes in areas used by the cell (newly or steadily occupied or better abandoned) it is an introduction to the zero-line concept, which denotes spots of tranquility among continuously moving surroundings. Conclusions: The measurement of zero-line length has emerged as a novel biomarker for characterizing cell mass transfer. The sensitivity of phase change measurements is demonstrated. The noise quality of input images obtained with incoherent (hiQPI) and coherent (QPI) methods is compared. The resulting effect on the AID method output is also shown. The findings of this study introduce a novel approach to evaluating cellular behavior in vitro. The concept emerged as a particularly noteworthy outcome. Collectively, these results highlight the substantial potential of AID in advancing the field of cancer cells biology, particularly.
Description
Keywords
Digital holographic microscopy , Biophysics , Cancer cell migration , Non-invasive , Quantitative phase imaging , Live cell imaging , Staining-free imaging , Image processing , Digital holographic microscopy , Biophysics , Cancer cell migration , Non-invasive , Quantitative phase imaging , Live cell imaging , Staining-free imaging , Image processing
Citation
Computer Methods and Programs in Biomedicine. 2025, vol. 268, issue 8, p. 1-8.
https://www.sciencedirect.com/science/article/pii/S0169260725002469
https://www.sciencedirect.com/science/article/pii/S0169260725002469
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

0000-0002-1264-4781 