Entropy-Driven Grain Boundary Segregation: Prediction of the Phenomenon

Loading...
Thumbnail Image

Authors

Lejček, Pavel
Hofmann, Siegfried

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

ORCID

Altmetrics

Abstract

The question is formulated as to whether entropy-driven grain boundary segregation can exist. Such a phenomenon would be based on the assumption that a solute can segregate at the grain boundary sites that exhibit positive segregation energy (enthalpy) if the product of segregation entropy and temperature is larger than this energy (enthalpy). The possibility of entropy-driven grain boundary segregation is discussed for several model examples in iron-based systems, which can serve as indirect evidence of the phenomenon. It is shown that entropy-driven grain boundary segregation would be a further step beyond the recently proposed entropy-dominated grain boundary segregation as it represents solute segregation at "anti-segregation" sites.
The question is formulated as to whether entropy-driven grain boundary segregation can exist. Such a phenomenon would be based on the assumption that a solute can segregate at the grain boundary sites that exhibit positive segregation energy (enthalpy) if the product of segregation entropy and temperature is larger than this energy (enthalpy). The possibility of entropy-driven grain boundary segregation is discussed for several model examples in iron-based systems, which can serve as indirect evidence of the phenomenon. It is shown that entropy-driven grain boundary segregation would be a further step beyond the recently proposed entropy-dominated grain boundary segregation as it represents solute segregation at "anti-segregation" sites.

Description

Citation

Metals. 2021, vol. 11, issue 8, p. 1-10.
https://www.mdpi.com/2075-4701/11/8/1331

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO