Effectiveness of common water-reducing admixtures in alkali-activated slag pastes with different types of activator

Loading...
Thumbnail Image

Authors

Bílek, Vlastimil
Hrubá, Valeriia
Hrubý, Petr
Kalina, Lukáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

Rheology of alkali-activated slag (AAS) is a very complex issue, where the activator nature as well as its dose play an important role. Moreover, the use of water-reducing admixtures in these systems is an issue, as they often do not work properly. This could be attributed to the high pH as well as to the surface chemistry of AAS. Therefore, lignosulfonate-, polynaphthalene- and polycarboxylate-based superplasticizers were used to modify AAS pastes with sodium waterglass, hydroxide and carbonate activator. These pastes were tested using a rotational rheometer in an oscillatory shear mode of increasing shear strain to observe the evolution of viscoelastic moduli and to determine the oscillatory stress corresponding to the linear viscoelastic region limit ("yield point") and to the crossover point, where the storage modulus equals the loss modulus ("flow point"). In most cases, the used plasticizers did not improve the rheological properties; the only exception was the lignosulfonate one in sodium hydroxide-activated slag.
Rheology of alkali-activated slag (AAS) is a very complex issue, where the activator nature as well as its dose play an important role. Moreover, the use of water-reducing admixtures in these systems is an issue, as they often do not work properly. This could be attributed to the high pH as well as to the surface chemistry of AAS. Therefore, lignosulfonate-, polynaphthalene- and polycarboxylate-based superplasticizers were used to modify AAS pastes with sodium waterglass, hydroxide and carbonate activator. These pastes were tested using a rotational rheometer in an oscillatory shear mode of increasing shear strain to observe the evolution of viscoelastic moduli and to determine the oscillatory stress corresponding to the linear viscoelastic region limit ("yield point") and to the crossover point, where the storage modulus equals the loss modulus ("flow point"). In most cases, the used plasticizers did not improve the rheological properties; the only exception was the lignosulfonate one in sodium hydroxide-activated slag.

Description

Citation

IOP Conference Series: Materials Science and Engineering. 2021, vol. 1205, issue 1, p. 1-7.
https://iopscience.iop.org/article/10.1088/1757-899X/1205/1/012001

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO