Higher-order and Weil generalization of Grassmannian

dc.contributor.authorTomáš, Jiřícs
dc.coverage.issue1cs
dc.coverage.volume43cs
dc.date.issued2023-01-16cs
dc.description.abstractWe give a simple mechanical motivation for a generalization of the classical Grassmannian considered as a space of m-dimensional linear subspaces of Rk to higher-orders cases. Our efforts are prolongated to the Weil functor theory, motivated by non-holonomic and semi-holonomic jets, applicable in the description of the Cosserat model.en
dc.formattextcs
dc.format.extent65-70cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationProcedia Structural Integrity. 2023, vol. 43, issue 1, p. 65-70.en
dc.identifier.doi10.1016/j.prostr.2022.12.236cs
dc.identifier.issn2452-3216cs
dc.identifier.orcid0000-0001-6381-7948cs
dc.identifier.other181400cs
dc.identifier.urihttp://hdl.handle.net/11012/213731
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofProcedia Structural Integritycs
dc.relation.urihttps://authors.elsevier.com/sd/article/S2452-3216(22)00799-5cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2452-3216/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectjeten
dc.subjectbundle functoren
dc.subjectWeil functoren
dc.subjectLie groupen
dc.subjectjet groupen
dc.subjectprincipal bundleen
dc.subjecthomogeneous spaceen
dc.titleHigher-order and Weil generalization of Grassmannianen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-181400en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:48:55en
sync.item.modts2025.01.17 15:20:07en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2452321622007995main.pdf
Size:
554.1 KB
Format:
Adobe Portable Document Format
Description:
1s2.0S2452321622007995main.pdf