Correlative Imaging of Individual CsPbBr3 Nanocrystals: Role of Isolated Grains in Photoluminescence of Perovskite Polycrystalline Thin Films

Loading...
Thumbnail Image

Authors

Liška, Petr
Musálek, Tomáš
Šamořil, Tomáš
Kratochvíl, Matouš
Matula, Radovan
Horák, Michal
Nedvěd, Matěj
Urban, Jakub
Planer, Jakub
Rovenská, Katarína

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

AMER CHEMICAL SOC
Altmetrics

Abstract

We report on the optical properties of a CsPbBr3 polycrystallinethin film on a single grain level. A sample composed of isolated nanocrystals(NCs) mimicking the properties of the polycrystalline thin film grainsthat can be individually probed by photoluminescence spectroscopywas prepared. These NCs were analyzed using correlative microscopyallowing the examination of structural, chemical, and optical propertiesfrom identical sites. Our results show that the stoichiometry of theCsPbBr(3) NCs is uniform and independent of the NCs'morphology. The photoluminescence (PL) peak emission wavelength isslightly dependent on the dimensions of NCs, with a blue shift upto 9 nm for the smallest analyzed NCs. The magnitude of theblueshift is smaller than the emission line width, thus detectableonly by high-resolution PL mapping. By comparing the emission energiesobtained from the experiment and a rigorous effective mass model,we can fully attribute the observed variations to the size-dependentquantum confinement effect.
We report on the optical properties of a CsPbBr3 polycrystallinethin film on a single grain level. A sample composed of isolated nanocrystals(NCs) mimicking the properties of the polycrystalline thin film grainsthat can be individually probed by photoluminescence spectroscopywas prepared. These NCs were analyzed using correlative microscopyallowing the examination of structural, chemical, and optical propertiesfrom identical sites. Our results show that the stoichiometry of theCsPbBr(3) NCs is uniform and independent of the NCs'morphology. The photoluminescence (PL) peak emission wavelength isslightly dependent on the dimensions of NCs, with a blue shift upto 9 nm for the smallest analyzed NCs. The magnitude of theblueshift is smaller than the emission line width, thus detectableonly by high-resolution PL mapping. By comparing the emission energiesobtained from the experiment and a rigorous effective mass model,we can fully attribute the observed variations to the size-dependentquantum confinement effect.

Description

Citation

Journal of Physical Chemistry C. 2023, vol. 127, issue 25, p. 12404-12413.
https://pubs.acs.org/doi/10.1021/acs.jpcc.3c03056

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO