Large time behavior of nonautonomous linear differential equations with Kirchhoff coefficients

dc.contributor.authorDiblík, Josefcs
dc.contributor.authorPituk, Mihalycs
dc.contributor.authorSzederkényi, Gáborcs
dc.coverage.issue3cs
dc.coverage.volume161cs
dc.date.accessioned2025-02-03T14:44:47Z
dc.date.available2025-02-03T14:44:47Z
dc.date.issued2024-03-31cs
dc.description.abstractNonautonomous linear ordinary differential equations with Kirchhoff coefficients are considered. Under appropriate assumptions on the topology of the directed graphs of the coefficients, it is shown that if the Perron vectors of the coefficients are slowly varying at infinity, then every solution is asymptotic to a constant multiple of the Perron vectors at infinity. Our results improve and generalize some recent convergence theorems.en
dc.formattextcs
dc.format.extent1-5cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAUTOMATICA. 2024, vol. 161, issue 3, p. 1-5.en
dc.identifier.doi10.1016/j.automatica.2023.111473cs
dc.identifier.issn0005-1098cs
dc.identifier.orcid0000-0001-5009-316Xcs
dc.identifier.other189321cs
dc.identifier.researcheridD-3530-2014cs
dc.identifier.scopus6701633618cs
dc.identifier.urihttps://hdl.handle.net/11012/249934
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofAUTOMATICAcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0005109823006428?via%3Dihubcs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0005-1098/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectLinear systemsen
dc.subjectTime-varying systemsen
dc.subjectPositive systemsen
dc.subjectKirchhoff matrixen
dc.titleLarge time behavior of nonautonomous linear differential equations with Kirchhoff coefficientsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189321en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:44:47en
sync.item.modts2025.01.17 15:17:01en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometriecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0005109823006428main.pdf
Size:
383.02 KB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S0005109823006428main.pdf