Stress Detection On Non-Eeg Physiolog Data

Loading...
Thumbnail Image

Date

Authors

Jindra, Jakub

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Stress detection based on Non-EEG physiological data can be useful for monitoring drivers, pilots, workers, and other subjects, where standard EEG monitoring is unsuitable. This work uses Non-EEG database freely available from Physionet. The database contains records of heart rate, saturation of blood oxygen, motion, a conductance of skin and temperature. Model for automatic detection of stress was learned on these data. Best results were reached using a model of a decision tree with 25 features. The accuracy of the resulting model is approximately 93 %.

Description

Citation

Proceedings of the 25st Conference STUDENT EEICT 2019. s. 203-206. ISBN 978-80-214-5735-5
http://www.feec.vutbr.cz/EEICT/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

cs

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO