Laminar-turbulent transition in a constricted tube: Comparison of Reynolds-averaged Navier–Stokes turbulence models and large eddy simulation with experiments

dc.contributor.authorElcner, Jakubcs
dc.contributor.authorLízal, Františekcs
dc.contributor.authorJedelský, Jancs
dc.contributor.authorTuhovčák, Jáncs
dc.contributor.authorJícha, Miroslavcs
dc.coverage.issue5cs
dc.coverage.volume11cs
dc.date.accessioned2020-08-04T11:02:39Z
dc.date.available2020-08-04T11:02:39Z
dc.date.issued2019-05-27cs
dc.description.abstractConstricted tubes appear in many engineering as well as biological systems such as blood vessels or pulmonary airways. The aim of this article is to test the ability of different turbulence models to predict the flow field and deposition of particles in a constricted tube. The constricted geometry of Ahmed and Giddens was employed to compare various numerical approaches. Two large eddy simulations and several Reynolds-averaged Navier-Stokes models were used for calculations using the Star-CCM+ commercial solver. The performance of these models was compared with the experiments and other published studies. For selected turbulence models, deposition of particles with different Stokes numbers using Lagrangian multiphase model was enabled. The results show that large eddy simulation best predicts the transition from laminar to turbulent flow in terms of mean axial velocity, and similarly does also standard low-Reynolds k-epsilon model. The comparison of deposition fractions shows substantial differences among the models, especially for the smallest particles. It was demonstrated that even a simple stenosed smooth tube is a very intricate problem for the present computational fluid dynamics models; therefore, to get reliable results, numerical models need to be validated for the same geometry and similar conditions.en
dc.formattextcs
dc.format.extent1-17cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvances in Mechanical Engineering. 2019, vol. 11, issue 5, p. 1-17.en
dc.identifier.doi10.1177/1687814019852261cs
dc.identifier.issn1687-8140cs
dc.identifier.other157111cs
dc.identifier.urihttp://hdl.handle.net/11012/180473
dc.language.isoencs
dc.publisherSAGE Journalscs
dc.relation.ispartofAdvances in Mechanical Engineeringcs
dc.relation.urihttps://doi.org/10.1177/1687814019852261cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1687-8140/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectComputational fluid mechanicsen
dc.subjectturbulence modelsen
dc.subjectReynolds-averaged Navier–Stokesen
dc.subjectlarge eddy simulationen
dc.subjectconstricted tubeen
dc.subjectstenosisen
dc.subjecttransitionen
dc.subjectlaminar to turbulenten
dc.subjectnumerical simulationsen
dc.subjectparticle depositionen
dc.titleLaminar-turbulent transition in a constricted tube: Comparison of Reynolds-averaged Navier–Stokes turbulence models and large eddy simulation with experimentsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-157111en
sync.item.dbtypeVAVen
sync.item.insts2020.08.04 13:02:39en
sync.item.modts2020.08.04 12:15:53en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. EÚ-odbor termomechaniky a techniky prostředícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1687814019852261.pdf
Size:
4.11 MB
Format:
Adobe Portable Document Format
Description:
1687814019852261.pdf