Sustainable air conditioning with a focus on evaporative cooling and the Maisotsenko cycle

Loading...
Thumbnail Image

Authors

Pokorný, Jan
Madejski, Pawel
Fišer, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IMP PAN Publishers
Altmetrics

Abstract

Evaporative cooling can be an answer to the growing global demand for energy efficient and sustainable air conditioning. Direct evaporative cooling is the traditional method of cooling air to wet-bulb temperature. Indirect evaporative cooling uses heat exchangers with wet and dry channels to cool air indirectly, avoiding an increase in humidity. The Maisotsenko cycle is a dew point indirect evaporative cooling that allows air to be cooled below wet-bulb temperature using a heat and mass exchanger with a coupled wet and dry channel. It can be used as a stand-alone system, or as coupled with traditional refrigerantbased cooling systems, or as a heat recovery process to improve the efficiency in the power industry applications. A Pythonbased computational tool for simulating of 1D heat and mass transfer in the Maisotsenko cycle is presented here. It uses a spatially discretised differential equation solver and a psychrometric chart. The 1D model and experimental data from the study of Pakari were used as a reference for the initial testing. The comparison results are promising, suggesting a potential application in the design of sustainable cooling.
Evaporative cooling can be an answer to the growing global demand for energy efficient and sustainable air conditioning. Direct evaporative cooling is the traditional method of cooling air to wet-bulb temperature. Indirect evaporative cooling uses heat exchangers with wet and dry channels to cool air indirectly, avoiding an increase in humidity. The Maisotsenko cycle is a dew point indirect evaporative cooling that allows air to be cooled below wet-bulb temperature using a heat and mass exchanger with a coupled wet and dry channel. It can be used as a stand-alone system, or as coupled with traditional refrigerantbased cooling systems, or as a heat recovery process to improve the efficiency in the power industry applications. A Pythonbased computational tool for simulating of 1D heat and mass transfer in the Maisotsenko cycle is presented here. It uses a spatially discretised differential equation solver and a psychrometric chart. The 1D model and experimental data from the study of Pakari were used as a reference for the initial testing. The comparison results are promising, suggesting a potential application in the design of sustainable cooling.

Description

Citation

Archives of Thermodynamics. 2025, vol. 46, issue 2, p. 111-121.
https://journals.pan.pl/dlibra/publication/154911/edition/135792/content

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO