Sustainable air conditioning with a focus on evaporative cooling and the Maisotsenko cycle
Loading...
Date
Authors
Pokorný, Jan
Madejski, Pawel
Fišer, Jan
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IMP PAN Publishers
Altmetrics
Abstract
Evaporative cooling can be an answer to the growing global demand for energy efficient and sustainable air conditioning. Direct evaporative cooling is the traditional method of cooling air to wet-bulb temperature. Indirect evaporative cooling uses heat exchangers with wet and dry channels to cool air indirectly, avoiding an increase in humidity. The Maisotsenko cycle is a dew point indirect evaporative cooling that allows air to be cooled below wet-bulb temperature using a heat and mass exchanger with a coupled wet and dry channel. It can be used as a stand-alone system, or as coupled with traditional refrigerantbased cooling systems, or as a heat recovery process to improve the efficiency in the power industry applications. A Pythonbased computational tool for simulating of 1D heat and mass transfer in the Maisotsenko cycle is presented here. It uses a spatially discretised differential equation solver and a psychrometric chart. The 1D model and experimental data from the study of Pakari were used as a reference for the initial testing. The comparison results are promising, suggesting a potential application in the design of sustainable cooling.
Evaporative cooling can be an answer to the growing global demand for energy efficient and sustainable air conditioning. Direct evaporative cooling is the traditional method of cooling air to wet-bulb temperature. Indirect evaporative cooling uses heat exchangers with wet and dry channels to cool air indirectly, avoiding an increase in humidity. The Maisotsenko cycle is a dew point indirect evaporative cooling that allows air to be cooled below wet-bulb temperature using a heat and mass exchanger with a coupled wet and dry channel. It can be used as a stand-alone system, or as coupled with traditional refrigerantbased cooling systems, or as a heat recovery process to improve the efficiency in the power industry applications. A Pythonbased computational tool for simulating of 1D heat and mass transfer in the Maisotsenko cycle is presented here. It uses a spatially discretised differential equation solver and a psychrometric chart. The 1D model and experimental data from the study of Pakari were used as a reference for the initial testing. The comparison results are promising, suggesting a potential application in the design of sustainable cooling.
Evaporative cooling can be an answer to the growing global demand for energy efficient and sustainable air conditioning. Direct evaporative cooling is the traditional method of cooling air to wet-bulb temperature. Indirect evaporative cooling uses heat exchangers with wet and dry channels to cool air indirectly, avoiding an increase in humidity. The Maisotsenko cycle is a dew point indirect evaporative cooling that allows air to be cooled below wet-bulb temperature using a heat and mass exchanger with a coupled wet and dry channel. It can be used as a stand-alone system, or as coupled with traditional refrigerantbased cooling systems, or as a heat recovery process to improve the efficiency in the power industry applications. A Pythonbased computational tool for simulating of 1D heat and mass transfer in the Maisotsenko cycle is presented here. It uses a spatially discretised differential equation solver and a psychrometric chart. The 1D model and experimental data from the study of Pakari were used as a reference for the initial testing. The comparison results are promising, suggesting a potential application in the design of sustainable cooling.
Description
Keywords
Sustainability , Cooling , M-cycle , Python , 1D model , Sustainability , Cooling , M-cycle , Python , 1D model
Citation
Archives of Thermodynamics. 2025, vol. 46, issue 2, p. 111-121.
https://journals.pan.pl/dlibra/publication/154911/edition/135792/content
https://journals.pan.pl/dlibra/publication/154911/edition/135792/content
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0003-1932-899X 