Stability of incommensurately modulated Ni50Mn27Ga22Fe1 10M martensite under uniaxial tensile stress

Loading...
Thumbnail Image

Authors

Vinogradova, Mariia
Sozinov, Alexei
Straka, Ladislav
Veřtát, Petr
Heczko, Oleg
Zelený, Martin
Chulist, Robert
Ullakko, Kari

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
Altmetrics

Abstract

We investigate the incommensurately modulated crystal structure in the Ni50Mn27Ga22Fe1 magnetic shape memory alloy. We focus on temperature- and stress-induced changes, particularly measuring the a and b lattice parameters and the monoclinic angle. The in-situ XRD experiment shows that the thermally-induced commensurate-incommensurate (C-IC) transition coincides with the change of the average lattice symmetry from monoclinic to orthorhombic. The thermally-induced IC structure is stable under uniaxial tensile stress along the a-axis for deformation epsilon < 0.8 %. A mixture of the IC and C structures appears for epsilon > 0.8 % and the changes become irreversible. The volume fraction of the C structure further increases with increasing deformation. These results provide vital initial insights into the structural evolution of Ni-Mn-Ga alloys and enable us to establish the role of C and IC structures in their extraordinarily high mobility of twin boundaries.
We investigate the incommensurately modulated crystal structure in the Ni50Mn27Ga22Fe1 magnetic shape memory alloy. We focus on temperature- and stress-induced changes, particularly measuring the a and b lattice parameters and the monoclinic angle. The in-situ XRD experiment shows that the thermally-induced commensurate-incommensurate (C-IC) transition coincides with the change of the average lattice symmetry from monoclinic to orthorhombic. The thermally-induced IC structure is stable under uniaxial tensile stress along the a-axis for deformation epsilon < 0.8 %. A mixture of the IC and C structures appears for epsilon > 0.8 % and the changes become irreversible. The volume fraction of the C structure further increases with increasing deformation. These results provide vital initial insights into the structural evolution of Ni-Mn-Ga alloys and enable us to establish the role of C and IC structures in their extraordinarily high mobility of twin boundaries.

Description

Citation

SCRIPTA MATERIALIA. 2024, vol. 247, issue -, p. 116096--.
https://www.sciencedirect.com/science/article/pii/S1359646224001325

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO