Memristors with Initial Low-Resistive State for Efficient Neuromorphic Systems

Loading...
Thumbnail Image

Authors

Zhu, Kaichen
Mahmoodi, Mohammad Reza
Fahimi, Zahra
Xiao, Yiping
Wang, Tao
Bukvišová, Kristýna
Kolíbal, Miroslav
Roldán, Juan Bautista
Perez, David
Aguirre, Fernando

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley
Altmetrics

Abstract

Memristive electronic synapses are attractive to construct artificial neural networks (ANNs) for neuromorphic computing systems, owing to their excellent electronic performance, high integration density, and low cost. However, the necessity of initializing their conductance through a forming process requires additional peripheral hardware and complex programming algorithms. Herein, the first fabrication of memristors that are initially in low-resistive state (LRS) is reported, which exhibit homogenous initial resistance and switching voltages. When used as electronic synapses in a neuromorphic system to classify images from the CIFAR-10 dataset (Canadian Institute For Advanced Research), the memristors offer x1.83 better throughput per area and consume x0.85 less energy than standard memristors (i.e., with the necessity of forming), which stems from approximate to 63% better density and approximate to 17% faster operation. It is demonstrated in the results that tuning the local properties of materials embedded in memristive electronic synapses is an attractive strategy that can lead to an improved neuromorphic performance at the system level.
Memristive electronic synapses are attractive to construct artificial neural networks (ANNs) for neuromorphic computing systems, owing to their excellent electronic performance, high integration density, and low cost. However, the necessity of initializing their conductance through a forming process requires additional peripheral hardware and complex programming algorithms. Herein, the first fabrication of memristors that are initially in low-resistive state (LRS) is reported, which exhibit homogenous initial resistance and switching voltages. When used as electronic synapses in a neuromorphic system to classify images from the CIFAR-10 dataset (Canadian Institute For Advanced Research), the memristors offer x1.83 better throughput per area and consume x0.85 less energy than standard memristors (i.e., with the necessity of forming), which stems from approximate to 63% better density and approximate to 17% faster operation. It is demonstrated in the results that tuning the local properties of materials embedded in memristive electronic synapses is an attractive strategy that can lead to an improved neuromorphic performance at the system level.

Description

Citation

Advanced Intelligent Systems. 2022, vol. 4, issue 3, p. 2200001-220001.
https://onlinelibrary.wiley.com/doi/10.1002/aisy.202200001

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO