Detection Of Pathological Vertebrae In Spinal Ct Utilised By Machine Learning Methods
but.event.date | 25.04.2019 | cs |
but.event.title | Student EEICT 2019 | cs |
dc.contributor.author | Tyshchenko, Bohdan | |
dc.date.accessioned | 2020-04-16T07:19:35Z | |
dc.date.available | 2020-04-16T07:19:35Z | |
dc.date.issued | 2019 | cs |
dc.description.abstract | This paper presents a computer aided detection system to identify pathological vertebrae and to classify a type of pathology. Designed classification system is based on using neural network (NN), which performs classification step and on principal component analysis (PCA), which is used to reducing the original number of observation features. | en |
dc.format | text | cs |
dc.format.extent | 390-393 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 25st Conference STUDENT EEICT 2019. s. 390-393. ISBN 978-80-214-5735-5 | cs |
dc.identifier.isbn | 978-80-214-5735-5 | |
dc.identifier.uri | http://hdl.handle.net/11012/186700 | |
dc.language.iso | cs | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 25st Conference STUDENT EEICT 2019 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Neural network | en |
dc.subject | Classification | en |
dc.subject | CT | en |
dc.subject | Machine Learning | en |
dc.subject | Pathologies of spine | en |
dc.subject | Principal Component Analysis | en |
dc.subject | Vertebra | en |
dc.title | Detection Of Pathological Vertebrae In Spinal Ct Utilised By Machine Learning Methods | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 390_eeict2019.pdf
- Size:
- 740.56 KB
- Format:
- Adobe Portable Document Format
- Description: