Detection of Gunshots from Small Arms

but.event.date25.04.2023cs
but.event.titleSTUDENT EEICT 2023cs
dc.contributor.authorNesvadba, Ondřej
dc.date.accessioned2023-07-17T05:57:32Z
dc.date.available2023-07-17T05:57:32Z
dc.date.issued2023cs
dc.description.abstractThis paper deals with acoustic gunshot detectionfrom small arms primarily for use in urban areas. Key part of thepaper is an examination of typical features of gunshot signals.Based on the short-term features detection algorithms areproposed in the time and frequency domains. Training andevaluation of the algorithms was performed using real gunshots,non-gunshots as well as synthetic gunshots. The non-gunshots setcontains impulsive acoustic events such as dog barking, glassbreaking, car horn, etc.en
dc.formattextcs
dc.format.extent9-12cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 9-12. ISBN 978-80-214-6154-3cs
dc.identifier.doi10.13164/eeict.2023.9
dc.identifier.isbn978-80-214-6154-3
dc.identifier.issn2788-1334
dc.identifier.urihttp://hdl.handle.net/11012/210649
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 29st Conference STUDENT EEICT 2023: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectdetectionen
dc.subjectdetection algorithmsen
dc.subjectfrequency domain,gunshoten
dc.subjectgunshot parametersen
dc.subjectsmall armsen
dc.subjecttime domainen
dc.titleDetection of Gunshots from Small Armsen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9_EEICT_selected.pdf
Size:
813.91 KB
Format:
Adobe Portable Document Format
Description: