Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment

dc.contributor.authorKrajňák, Tomášcs
dc.contributor.authorStará, Veronikacs
dc.contributor.authorProcházka, Pavelcs
dc.contributor.authorPlaner, Jakubcs
dc.contributor.authorSkála, Tomášcs
dc.contributor.authorBlatnik, Matthiascs
dc.contributor.authorČechal, Jancs
dc.coverage.issue14cs
dc.coverage.volume16cs
dc.date.issued2024-03-29cs
dc.description.abstractThe interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through the interface. However, the employed interlayers face common challenges, including a lack of electric dipoles to tune the mutual position of energy levels, being too thick for efficient electronic transport, or being prone to intermixing with subsequently deposited OS layers. Here, we show that monolayers of 1,3,5-tris(4-carboxyphenyl)benzene (BTB) with fully deprotonated carboxyl groups on silver substrates form a compact layer resistant to intermixing while capable of mediating energy-level alignment and showing a large insensitivity to substrate termination. Employing a combination of surface-sensitive techniques, i.e., low-energy electron microscopy and diffraction, X-ray photoelectron spectroscopy, and scanning tunneling microscopy, we have comprehensively characterized the compact layer and proven its robustness against mixing with the subsequently deposited organic semiconductor layer. Density functional theory calculations show that the robustness arises from a strong interaction of carboxylate groups with the Ag surface, and thus, the BTB in the first layer is energetically favored. Synchrotron radiation photoelectron spectroscopy shows that this layer displays considerable electrical dipoles that can be utilized for work function engineering and electronic alignment of molecular frontier orbitals with respect to the substrate Fermi level. Our work thus provides a widely applicable molecular interlayer and general insights necessary for engineering of charge injection layers for efficient organic electronics.en
dc.formattextcs
dc.format.extent18099-18111cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationACS applied materials & interfaces. 2024, vol. 16, issue 14, p. 18099-18111.en
dc.identifier.doi10.1021/acsami.3c18697cs
dc.identifier.issn1944-8252cs
dc.identifier.orcid0000-0003-0920-3608cs
dc.identifier.orcid0000-0003-4818-4366cs
dc.identifier.orcid0000-0002-4727-4776cs
dc.identifier.orcid0000-0001-5448-8580cs
dc.identifier.orcid0000-0003-4745-8441cs
dc.identifier.other188450cs
dc.identifier.researcheridG-3038-2018cs
dc.identifier.researcheridD-6994-2012cs
dc.identifier.scopus57204045950cs
dc.identifier.scopus55710905700cs
dc.identifier.urihttp://hdl.handle.net/11012/245522
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofACS applied materials & interfacescs
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acsami.3c18697cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1944-8252/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectcharge injection layersen
dc.subjectself-assemblyen
dc.subjectsurfacesen
dc.subjectphotoelectron spectroscopyen
dc.subjectenergy levelsen
dc.subjectlow-energy electron microscopyen
dc.subjectscanning tunneling microscopyen
dc.titleRobust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignmenten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/GA0/GA/GA23-08001Scs
sync.item.dbidVAV-188450en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:48:27en
sync.item.modts2025.01.17 18:33:15en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Molekulární nanostruktury na površíchcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
krajnaketal2024robustdipolarlayersbetweenorganicsemiconductorsandsilverforenergylevelalignment.pdf
Size:
9.8 MB
Format:
Adobe Portable Document Format
Description:
file krajnaketal2024robustdipolarlayersbetweenorganicsemiconductorsandsilverforenergylevelalignment.pdf