Global Sensitivity Analysis Based on Entropy: From Differential Entropy to Alternative Measures
Loading...
Date
Authors
Kala, Zdeněk
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
ORCID
Altmetrics
Abstract
Differential entropy can be negative, while discrete entropy is always non-negative. This article shows that negative entropy is a significant flaw when entropy is used as a sensitivity measure in global sensitivity analysis. Global sensitivity analysis based on differential entropy cannot have negative entropy, just as Sobol sensitivity analysis does not have negative variance. Entropy is similar to variance but does not have the same properties. An alternative sensitivity measure based on the approximation of the differential entropy using dome-shaped functionals with non-negative values is proposed in the article. Case studies have shown that new sensitivity measures lead to a rational structure of sensitivity indices with a significantly lower proportion of higher-order sensitivity indices compared to other types of distributional sensitivity analysis. In terms of the concept of sensitivity analysis, a decrease in variance to zero means a transition from the differential to discrete entropy. The form of this transition is an open question, which can be studied using other scientific disciplines. The search for new functionals for distributional sensitivity analysis is not closed, and other suitable sensitivity measures may be found.
Differential entropy can be negative, while discrete entropy is always non-negative. This article shows that negative entropy is a significant flaw when entropy is used as a sensitivity measure in global sensitivity analysis. Global sensitivity analysis based on differential entropy cannot have negative entropy, just as Sobol sensitivity analysis does not have negative variance. Entropy is similar to variance but does not have the same properties. An alternative sensitivity measure based on the approximation of the differential entropy using dome-shaped functionals with non-negative values is proposed in the article. Case studies have shown that new sensitivity measures lead to a rational structure of sensitivity indices with a significantly lower proportion of higher-order sensitivity indices compared to other types of distributional sensitivity analysis. In terms of the concept of sensitivity analysis, a decrease in variance to zero means a transition from the differential to discrete entropy. The form of this transition is an open question, which can be studied using other scientific disciplines. The search for new functionals for distributional sensitivity analysis is not closed, and other suitable sensitivity measures may be found.
Differential entropy can be negative, while discrete entropy is always non-negative. This article shows that negative entropy is a significant flaw when entropy is used as a sensitivity measure in global sensitivity analysis. Global sensitivity analysis based on differential entropy cannot have negative entropy, just as Sobol sensitivity analysis does not have negative variance. Entropy is similar to variance but does not have the same properties. An alternative sensitivity measure based on the approximation of the differential entropy using dome-shaped functionals with non-negative values is proposed in the article. Case studies have shown that new sensitivity measures lead to a rational structure of sensitivity indices with a significantly lower proportion of higher-order sensitivity indices compared to other types of distributional sensitivity analysis. In terms of the concept of sensitivity analysis, a decrease in variance to zero means a transition from the differential to discrete entropy. The form of this transition is an open question, which can be studied using other scientific disciplines. The search for new functionals for distributional sensitivity analysis is not closed, and other suitable sensitivity measures may be found.
Description
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-6873-3855 