Computing Platforms For Deep Learning Task In Computer Vision

but.event.date23.04.2020cs
but.event.titleStudent EEICT 2020cs
dc.contributor.authorKratochvila, Lukas
dc.date.accessioned2021-07-15T13:12:39Z
dc.date.available2021-07-15T13:12:39Z
dc.date.issued2020cs
dc.description.abstractThe recent progress in machine learning in computer vision guides to enormous hardware requirements. This paper discovers new innovative hardware capable of dealing with immense demands. The important decision is concentrating on task learning or the final classification. The main concern is on five domains: single-board computers, hardware accelerators, graphics cards, workstations, and cloud computing. These devices have several key features for detection that are discussed. Cloud computing is another presented approach. Furthermore, different delivery models of cloud computing are addressed.en
dc.formattextcs
dc.format.extent171-175cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 26st Conference STUDENT EEICT 2020: Selected Papers. s. 171-175. ISBN 978-80-214-5868-0cs
dc.identifier.isbn978-80-214-5868-0
dc.identifier.urihttp://hdl.handle.net/11012/200647
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 26st Conference STUDENT EEICT 2020: Selected papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/EEICT2020cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectDeep learningen
dc.subjectHardwareen
dc.subjectCloud computingen
dc.titleComputing Platforms For Deep Learning Task In Computer Visionen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
171-eeict_2.pdf
Size:
670.04 KB
Format:
Adobe Portable Document Format
Description: