Remarkably stable metal-organic frameworks on an inert substrate: M-TCNQ on graphene (M = Ni, Fe, Mn)
| dc.contributor.author | Jakub, Zdeněk | cs | 
| dc.contributor.author | Kurowská, Anna | cs | 
| dc.contributor.author | Herich, Ondrej | cs | 
| dc.contributor.author | Černá, Lenka | cs | 
| dc.contributor.author | Kormoš, Lukáš | cs | 
| dc.contributor.author | Trllová Shahsavar, Azin | cs | 
| dc.contributor.author | Procházka, Pavel | cs | 
| dc.contributor.author | Čechal, Jan | cs | 
| dc.coverage.issue | 26 | cs | 
| dc.coverage.volume | 14 | cs | 
| dc.date.issued | 2022-07-07 | cs | 
| dc.description.abstract | Potential applications of 2D metal-organic frameworks (MOF) require the frameworks to be monophase and well-defined at the atomic scale, to be decoupled from the supporting substrate, and to remain stable at the application conditions. Here,we present three systems meeting this elusive set of requirements: M-TCNQ (M = Ni, Fe, Mn) on epitaxial graphene/Ir(111). We study the systems experimentally by scanning tunneling microscopy, low energy electron microscopy and x-ray photoelectron spectroscopy. When synthesized on graphene, the 2D M-TCNQ MOFs are monophase with M1(TCNQ)1 stoichiometry, no alternative structure was observed with slight variation of the preparation protocol. We further demonstrate a remarkable chemical and thermal stability of TCNQ-based 2D MOFs: All the studied systems survive exposure to ambient conditions, with Ni-TCNQ doing so without any significant changes to its atomic-scale structure or chemical state. Thermally, the most stable system is Fe-TCNQ which remains stable above 500 °C, while all the tested MOFs survive heating to 250 °C. Overall, the modular M-TCNQ/graphene system combines the atomic-scale definition required for fundamental studies with the robustness and stability needed for applications, thus we consider it an ideal model for research in single atom catalysis, spintronics or high-density storage media. | en | 
| dc.description.abstract | Potential applications of 2D metal-organic frameworks (MOF) require the frameworks to be monophase and well-defined at the atomic scale, to be decoupled from the supporting substrate, and to remain stable at the application conditions. Here,we present three systems meeting this elusive set of requirements: M-TCNQ (M = Ni, Fe, Mn) on epitaxial graphene/Ir(111). We study the systems experimentally by scanning tunneling microscopy, low energy electron microscopy and x-ray photoelectron spectroscopy. When synthesized on graphene, the 2D M-TCNQ MOFs are monophase with M1(TCNQ)1 stoichiometry, no alternative structure was observed with slight variation of the preparation protocol. We further demonstrate a remarkable chemical and thermal stability of TCNQ-based 2D MOFs: All the studied systems survive exposure to ambient conditions, with Ni-TCNQ doing so without any significant changes to its atomic-scale structure or chemical state. Thermally, the most stable system is Fe-TCNQ which remains stable above 500 °C, while all the tested MOFs survive heating to 250 °C. Overall, the modular M-TCNQ/graphene system combines the atomic-scale definition required for fundamental studies with the robustness and stability needed for applications, thus we consider it an ideal model for research in single atom catalysis, spintronics or high-density storage media. | en | 
| dc.format | text | cs | 
| dc.format.extent | 9507-9515 | cs | 
| dc.format.mimetype | application/pdf | cs | 
| dc.identifier.citation | Nanoscale. 2022, vol. 14, issue 26, p. 9507-9515. | en | 
| dc.identifier.doi | 10.1039/d2nr02017c | cs | 
| dc.identifier.issn | 2040-3364 | cs | 
| dc.identifier.orcid | 0000-0001-9538-9087 | cs | 
| dc.identifier.orcid | 0000-0002-8646-8434 | cs | 
| dc.identifier.orcid | 0000-0001-9099-4595 | cs | 
| dc.identifier.orcid | 0000-0001-7120-7488 | cs | 
| dc.identifier.orcid | 0000-0002-4727-4776 | cs | 
| dc.identifier.orcid | 0000-0003-4745-8441 | cs | 
| dc.identifier.other | 178050 | cs | 
| dc.identifier.researcherid | AAW-8780-2020 | cs | 
| dc.identifier.researcherid | J-5596-2014 | cs | 
| dc.identifier.researcherid | G-3038-2018 | cs | 
| dc.identifier.researcherid | D-6994-2012 | cs | 
| dc.identifier.scopus | 57191076802 | cs | 
| dc.identifier.scopus | 57070117100 | cs | 
| dc.identifier.scopus | 55710905700 | cs | 
| dc.identifier.uri | http://hdl.handle.net/11012/208211 | |
| dc.language.iso | en | cs | 
| dc.publisher | Royal Society of Chemistry | cs | 
| dc.relation.ispartof | Nanoscale | cs | 
| dc.relation.uri | https://pubs.rsc.org/en/content/articlelanding/2022/NR/D2NR02017C | cs | 
| dc.rights | Creative Commons Attribution 4.0 International | cs | 
| dc.rights.access | openAccess | cs | 
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2040-3364/ | cs | 
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs | 
| dc.subject | SINGLE-ATOM CATALYSTS | en | 
| dc.subject | OXYGEN REDUCTION | en | 
| dc.subject | CHARGE-TRANSFER | en | 
| dc.subject | NETWORKS | en | 
| dc.subject | MONOLAYER | en | 
| dc.subject | SINGLE-ATOM CATALYSTS | |
| dc.subject | OXYGEN REDUCTION | |
| dc.subject | CHARGE-TRANSFER | |
| dc.subject | NETWORKS | |
| dc.subject | MONOLAYER | |
| dc.title | Remarkably stable metal-organic frameworks on an inert substrate: M-TCNQ on graphene (M = Ni, Fe, Mn) | en | 
| dc.title.alternative | Remarkably stable metal-organic frameworks on an inert substrate: M-TCNQ on graphene (M = Ni, Fe, Mn) | en | 
| dc.type.driver | article | en | 
| dc.type.status | Peer-reviewed | en | 
| dc.type.version | publishedVersion | en | 
| sync.item.dbid | VAV-178050 | en | 
| sync.item.dbtype | VAV | en | 
| sync.item.insts | 2025.10.14 15:06:05 | en | 
| sync.item.modts | 2025.10.14 10:29:36 | en | 
| thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrství | cs | 
| thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Molekulární nanostruktury na površích | cs | 
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- d2nr02017c.pdf
- Size:
- 3.93 MB
- Format:
- Adobe Portable Document Format
- Description:
- d2nr02017c.pdf
