Non-Destructive Characterization of Cured-in-Place Pipe Defects

dc.contributor.authorDvořák, Richardcs
dc.contributor.authorJakubka, Lubošcs
dc.contributor.authorTopolář, Liborcs
dc.contributor.authorRabenda, Martynacs
dc.contributor.authorWirowski, Arturcs
dc.contributor.authorPuchýř, Jancs
dc.contributor.authorKusák, Ivocs
dc.contributor.authorPazdera, Lubošcs
dc.coverage.issue24cs
dc.coverage.volume16cs
dc.date.issued2023-12-08cs
dc.description.abstractSewage and water networks are crucial infrastructures of modern urban society. The uninterrupted functionality of these networks is paramount, necessitating regular maintenance and rehabilitation. In densely populated urban areas, trenchless methods, particularly those employing cured-in-place pipe technology, have emerged as the most cost-efficient approach for network rehabilitation. Common diagnostic methods for assessing pipe conditions, whether original or retrofitted with-cured-in-place pipes, typically include camera examination or laser scans, and are limited in material characterization. This study introduces three innovative methods for characterizing critical aspects of pipe conditions. The impact-echo method, ground-penetrating radar, and impedance spectroscopy address the challenges posed by polymer liners and offer enhanced accuracy in defect detection. These methods enable the characterization of delamination, identification of caverns behind cured-in-place pipes, and evaluation of overall pipe health. A machine learning algorithm using deep learning on images acquired from impact-echo signals using continuous wavelet transformation is presented to characterize defects. The aim is to compare traditional machine learning and deep learning methods to characterize selected pipe defects. The measurement conducted with ground-penetrating radar is depicted, employing a heuristic algorithm to estimate caverns behind the tested polymer composites. This study also presents results obtained through impedance spectroscopy, employed to characterize the delamination of polymer liners caused by uneven curing. A comparative analysis of these methods is conducted, assessing the accuracy by comparing the known positions of defects with their predicted characteristics based on laboratory measurements.en
dc.formattextcs
dc.format.extent1-31cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials . 2023, vol. 16, issue 24, p. 1-31.en
dc.identifier.doi10.3390/ma16247570cs
dc.identifier.issn1996-1944cs
dc.identifier.orcid0000-0003-0024-2344cs
dc.identifier.orcid0000-0001-9437-473Xcs
dc.identifier.orcid0000-0002-9919-3484cs
dc.identifier.orcid0000-0002-9416-5644cs
dc.identifier.other185707cs
dc.identifier.researcheridAAL-7858-2020cs
dc.identifier.researcheridE-9341-2018cs
dc.identifier.researcheridA-6595-2016cs
dc.identifier.researcheridE-3469-2018cs
dc.identifier.scopus57195216023cs
dc.identifier.scopus37051376500cs
dc.identifier.scopus55569760200cs
dc.identifier.scopus6602266656cs
dc.identifier.urihttp://hdl.handle.net/11012/244291
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMaterialscs
dc.relation.urihttps://www.mdpi.com/1996-1944/16/24/7570cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1996-1944/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectnon-destructive testingen
dc.subjectmachine learningen
dc.subjectretrofittingen
dc.subjectcured-in-place pipesen
dc.subjectpolymersen
dc.subjectpipe defectsen
dc.titleNon-Destructive Characterization of Cured-in-Place Pipe Defectsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-185707en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:44:30en
sync.item.modts2025.01.17 16:41:40en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav fyzikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
materials1607570v2.pdf
Size:
31.79 MB
Format:
Adobe Portable Document Format
Description:
file materials1607570v2.pdf
Collections