The effect of glass fiber storage time on the mechanical response of polymer composite

Loading...
Thumbnail Image

Authors

Jurko, Michal
Součková, Lenka
Prokeš, Jan
Čech, Vladimír

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The growing demand for polymer composites and their widespread use is inevitably accompanied by the need to know their degradation behavior over a sufficiently long period of time. This study focuses on commercial glass fiber rovings, which were stored in the indoor environment for up to 11 years. Fibers with different storage times, from fresh up to the oldest, were used to produce unidirectional fiber-reinforced polyester composites that were characterized to determine their shear and flexural properties dependent on fiber storage time. A significant decrease in shear strength was observed throughout the aging of the fibers, down to a decrease of 33% for the oldest fibers. An important finding, however, was that the significant decrease in shear strength was only partially reflected in the flexural strength, which corresponded to a decrease of 18% for the oldest fibers at consistent flexural modulus.
The growing demand for polymer composites and their widespread use is inevitably accompanied by the need to know their degradation behavior over a sufficiently long period of time. This study focuses on commercial glass fiber rovings, which were stored in the indoor environment for up to 11 years. Fibers with different storage times, from fresh up to the oldest, were used to produce unidirectional fiber-reinforced polyester composites that were characterized to determine their shear and flexural properties dependent on fiber storage time. A significant decrease in shear strength was observed throughout the aging of the fibers, down to a decrease of 33% for the oldest fibers. An important finding, however, was that the significant decrease in shear strength was only partially reflected in the flexural strength, which corresponded to a decrease of 18% for the oldest fibers at consistent flexural modulus.

Description

Citation

Polymers. 2022, vol. 14, issue 21, p. 1-9.
https://www.mdpi.com/2073-4360/14/21/4633

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO