Sparse Representation for Classification of Posture in Bed

Loading...
Thumbnail Image
Date
2023
Authors
Mesárošová, Michaela
Mihálik, Ondrej
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
Redundant dictionaries, also known as frames, offera non–orthogonal representation of signals, which leads to sparsityin their representative coefficients. As this approach providesmany advantageous properties it has been used in various applicationssuch as denoising, robust transmissions, segmentation,quantum theory and others. This paper investigates the possibilityof using sparse representation in classification, comparing theachieved results to other commonly used classifiers. The differentmethods were evaluated in a real-world classification task inwhich the position of a lying patient has to be deduced basedon the data provided by a pressure mattress of 30×11 sensors.The investigated method outperformed most of the commonlyused classifiers with accuracy exceeding 92%, while being lessdemanding on design and implementation complexity.
Description
Citation
Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 101-104. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Citace PRO