Sparse Representation for Classification of Posture in Bed

Loading...
Thumbnail Image

Date

Authors

Mesárošová, Michaela
Mihálik, Ondrej

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

Redundant dictionaries, also known as frames, offera non–orthogonal representation of signals, which leads to sparsityin their representative coefficients. As this approach providesmany advantageous properties it has been used in various applicationssuch as denoising, robust transmissions, segmentation,quantum theory and others. This paper investigates the possibilityof using sparse representation in classification, comparing theachieved results to other commonly used classifiers. The differentmethods were evaluated in a real-world classification task inwhich the position of a lying patient has to be deduced basedon the data provided by a pressure mattress of 30×11 sensors.The investigated method outperformed most of the commonlyused classifiers with accuracy exceeding 92%, while being lessdemanding on design and implementation complexity.

Description

Citation

Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 101-104. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO