X-ray induced electrostatic graphene doping via defect charging in gate dielectric

Loading...
Thumbnail Image

Authors

Procházka, Pavel
Mareček, David
Lišková, Zuzana
Čechal, Jan
Šikola, Tomáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

NPG
Altmetrics

Abstract

Graphene field effect transistors are becoming an integral part of advanced devices. Hence, the advanced strategies for both characterization and tuning of graphene properties are required. Here we show that the X-ray irradiation at the zero applied gate voltage causes very strong negative doping of graphene, which is explained by X-ray radiation induced charging of defects in the gate dielectric. The induced charge can be neutralized and compensated if the graphene device is irradiated by X-rays at a negative gate voltage. Here the charge neutrality point shifts back to zero voltage. The observed phenomenon has strong implications for interpretation of X-ray based measurements of graphene devices as it renders them to significantly altered state. Our results also form a basis for remote X-ray tuning of graphene transport properties and X-ray sensors comprising the graphene/oxide interface as an active layer
Graphene field effect transistors are becoming an integral part of advanced devices. Hence, the advanced strategies for both characterization and tuning of graphene properties are required. Here we show that the X-ray irradiation at the zero applied gate voltage causes very strong negative doping of graphene, which is explained by X-ray radiation induced charging of defects in the gate dielectric. The induced charge can be neutralized and compensated if the graphene device is irradiated by X-rays at a negative gate voltage. Here the charge neutrality point shifts back to zero voltage. The observed phenomenon has strong implications for interpretation of X-ray based measurements of graphene devices as it renders them to significantly altered state. Our results also form a basis for remote X-ray tuning of graphene transport properties and X-ray sensors comprising the graphene/oxide interface as an active layer

Description

Citation

Scientific Reports. 2017, vol. 7, issue 1, p. 1-7.
https://www.nature.com/articles/s41598-017-00673-z

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO