Modelling of UAV Communications in Integrated Terrestrial and Non-Terrestrial Networks

but.committeedoc. Ing. Jan Jeřábek, Ph.D. (místopředseda) M.Sc. Sara Ricci, Ph.D. (člen) Ing. Martin Štůsek, Ph.D. (člen) Ing. Pavel Paluřík (člen) Ing. Willi Lazarov (člen) prof. Ing. Miroslav Vozňák, Ph.D. (předseda)cs
but.defenceStudent presented the results of his thesis and the committee got familiar with reviewer's report. Student defended his Diploma Thesis and answered the questions from the members of the committee and the reviewer.cs
but.jazykangličtina (English)
but.programCommunications and Networking (Double-Degree)cs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorKirubakaran, Balajien
dc.contributor.authorGuha, Ritwiken
dc.contributor.refereeMožný, Radeken
dc.date.created2025cs
dc.description.abstractThis diploma thesis investigates enhancing Quality of Experience (QoE), especially in areas where terrestrial networks cannot meet demands. The focus is on a hybrid archi tecture integrating Non-Terrestrial Networks (NTNs) with standard terrestrial networks. A vital aspect of this architecture is using Unmanned Aerial Vehicles (UAVs) to provide dynamic service in underserved areas. A machine learning-based methodology uses a hybrid clustering algorithm (DBSCAN + Mean Shift) to group users based on location and network conditions. This clustering facilitates the strategic allocation of users to the most appropriate network type, guided by signal quality considerations. The study further incorporates constrained K-means for initial UAV positioning and a Genetic Algorithm for optimizing these placements, aiming to boost network efficiency and reduce interference. Simulations using Python tools indicate that this hybrid approach improves network QoE compared to terrestrial network systems. The results from this study contribute to the development of more resilient and extensive network infrastructures, demonstrating the effectiveness of combining terrestrial and non-terrestrial network technologies.en
dc.description.abstractThis diploma thesis investigates enhancing Quality of Experience (QoE), especially in areas where terrestrial networks cannot meet demands. The focus is on a hybrid archi tecture integrating Non-Terrestrial Networks (NTNs) with standard terrestrial networks. A vital aspect of this architecture is using Unmanned Aerial Vehicles (UAVs) to provide dynamic service in underserved areas. A machine learning-based methodology uses a hybrid clustering algorithm (DBSCAN + Mean Shift) to group users based on location and network conditions. This clustering facilitates the strategic allocation of users to the most appropriate network type, guided by signal quality considerations. The study further incorporates constrained K-means for initial UAV positioning and a Genetic Algorithm for optimizing these placements, aiming to boost network efficiency and reduce interference. Simulations using Python tools indicate that this hybrid approach improves network QoE compared to terrestrial network systems. The results from this study contribute to the development of more resilient and extensive network infrastructures, demonstrating the effectiveness of combining terrestrial and non-terrestrial network technologies.cs
dc.description.markBcs
dc.identifier.citationGUHA, R. Modelling of UAV Communications in Integrated Terrestrial and Non-Terrestrial Networks [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2025.cs
dc.identifier.other167446cs
dc.identifier.urihttp://hdl.handle.net/11012/251528
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologiícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectHybrid Network Architectureen
dc.subjectNon-Terrestrial Networksen
dc.subjectUAVsen
dc.subjectHAPSen
dc.subjectMachine Learn ingen
dc.subjectClustering Algorithmsen
dc.subjectNetwork Optimization.en
dc.subjectHybrid Network Architecturecs
dc.subjectNon-Terrestrial Networkscs
dc.subjectUAVscs
dc.subjectHAPScs
dc.subjectMachine Learn ingcs
dc.subjectClustering Algorithmscs
dc.subjectNetwork Optimization.cs
dc.titleModelling of UAV Communications in Integrated Terrestrial and Non-Terrestrial Networksen
dc.title.alternativeModelling of UAV Communications in Integrated Terrestrial and Non-Terrestrial Networkscs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2025-06-09cs
dcterms.modified2025-06-11-12:18:10cs
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs
sync.item.dbid167446en
sync.item.dbtypeZPen
sync.item.insts2025.08.27 02:03:31en
sync.item.modts2025.08.26 19:48:20en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs
thesis.levelInženýrskýcs
thesis.nameIng.cs

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
4.21 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
review_167446.html
Size:
4.92 KB
Format:
Hypertext Markup Language
Description:
file review_167446.html

Collections