Requirements for Hybrid Technology Enabling the Production of High-Precision Thin-Wall Castings

dc.contributor.authorKrutiš, Vladimírcs
dc.contributor.authorNovosad, Pavelcs
dc.contributor.authorZáděra, Antoníncs
dc.contributor.authorKaňa, Václavcs
dc.coverage.issue11cs
dc.coverage.volume15cs
dc.date.accessioned2022-08-19T10:52:24Z
dc.date.available2022-08-19T10:52:24Z
dc.date.issued2022-05-26cs
dc.description.abstractPrototypes and small series production of metal thin-walled components is a field for the use of a number of additive technologies. This method has certain limits related to the size and price of the parts, productivity, or the type of requested material. On the other hand, conventional production methods encounter the limits of shape, which are currently associated with the implementation of optimization methods such as topological optimization or generative design. An effective solution is employing hybrid technology, which combines the advantages of 3D model printing and conventional casting production methods. This paper describes the design of aluminum casting using topological optimization and technological co-design for the purpose of switching to new manufacturing technology. It characterizes the requirements of hybrid technology for the material and properties of the model in relation to the production operations of the investment casting technology. Optical roughness measurement compares the surface quality in a standard wax model and a model obtained by additive manufacturing (AM) of polymethyl methacrylate (PMMA) using the binder jetting method. The surface quality results of the 3D printed model evaluated by measuring the surface roughness are lower than for the standard wax model; however, they still meet the requirements of prototype production technology. The measurements proved that the PMMA model has half the thermal expansion in the measured interval compared to the wax model, which was confirmed by minimal shape deviations in the dimensional analysis.en
dc.formattextcs
dc.format.extent3805-3805cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials . 2022, vol. 15, issue 11, p. 3805-3805.en
dc.identifier.doi10.3390/ma15113805cs
dc.identifier.issn1996-1944cs
dc.identifier.other178797cs
dc.identifier.urihttp://hdl.handle.net/11012/208242
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMaterialscs
dc.relation.urihttps://www.mdpi.com/1996-1944/15/11/3805cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1996-1944/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjecttopological optimizationen
dc.subjecthybrid technologyen
dc.subjectadditive manufacturingen
dc.subjectinvestment castingen
dc.titleRequirements for Hybrid Technology Enabling the Production of High-Precision Thin-Wall Castingsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-178797en
sync.item.dbtypeVAVen
sync.item.insts2022.09.16 16:50:29en
sync.item.modts2022.09.16 16:16:18en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav strojírenské technologiecs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automobilního a dopravního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
materials1503805v2.pdf
Size:
7.03 MB
Format:
Adobe Portable Document Format
Description:
materials1503805v2.pdf