Transformer Neural Networks for Natural Language Processing
| but.committee | doc. Ing. Jan Jeřábek, Ph.D. (místopředseda) M.Sc. Sara Ricci, Ph.D. (člen) Ing. Martin Štůsek, Ph.D. (člen) Ing. Pavel Paluřík (člen) Ing. Willi Lazarov (člen) prof. Ing. Miroslav Vozňák, Ph.D. (předseda) | cs |
| but.defence | Student presented the results of his thesis and the committee got familiar with reviewer's report. Student defended his Diploma Thesis and answered the questions from the members of the committee and the reviewer. | cs |
| but.jazyk | angličtina (English) | |
| but.program | Communications and Networking (Double-Degree) | cs |
| but.result | práce byla úspěšně obhájena | cs |
| dc.contributor.advisor | Hošek, Jiří | en |
| dc.contributor.author | Tembo, Malinga | en |
| dc.contributor.referee | Ježek, Štěpán | en |
| dc.date.created | 2025 | cs |
| dc.description.abstract | This thesis outlines a retrieval-augmented generation (RAG) pipeline tailored specifically for domain-specific documentation, with particular focus on telecoms config guides. The pipeline outlined here integrates structural pre-processing, dense semantic indexing, and controlled prompt composition to improve factual coherence in LLM responses. The primary contribution is the design of a preprocessing method, based on which semi-structured guides are converted into hierarchically divided JSON files, to enable context-aware retrieval over a vector database. The system is evaluated on 45 queries comprising question answering, summarization, and CLI code generation, on the Arista EOS 4.17.0F guide used as a test corpus. Empirical performance shows retrieval drastically reduces hallucination and increases semantic relevance, with GPT-4 + RAG producing 0.82 accuracy and 0.02 hallucination rate. For contrast, TinyLlama returned nonsensical output for over one-third of inputs. These findings demonstrate the effectiveness of grounded retrieval in aligning model output with technical reference material and illustrate the benefit of structured input preparation for high-fidelity generation in documentation-heavy applications. | en |
| dc.description.abstract | This thesis outlines a retrieval-augmented generation (RAG) pipeline tailored specifically for domain-specific documentation, with particular focus on telecoms config guides. The pipeline outlined here integrates structural pre-processing, dense semantic indexing, and controlled prompt composition to improve factual coherence in LLM responses. The primary contribution is the design of a preprocessing method, based on which semi-structured guides are converted into hierarchically divided JSON files, to enable context-aware retrieval over a vector database. The system is evaluated on 45 queries comprising question answering, summarization, and CLI code generation, on the Arista EOS 4.17.0F guide used as a test corpus. Empirical performance shows retrieval drastically reduces hallucination and increases semantic relevance, with GPT-4 + RAG producing 0.82 accuracy and 0.02 hallucination rate. For contrast, TinyLlama returned nonsensical output for over one-third of inputs. These findings demonstrate the effectiveness of grounded retrieval in aligning model output with technical reference material and illustrate the benefit of structured input preparation for high-fidelity generation in documentation-heavy applications. | cs |
| dc.description.mark | B | cs |
| dc.identifier.citation | TEMBO, M. Transformer Neural Networks for Natural Language Processing [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2025. | cs |
| dc.identifier.other | 168320 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/251532 | |
| dc.language.iso | en | cs |
| dc.publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
| dc.subject | Large Language Models | en |
| dc.subject | Retrieval Augmented Generation | en |
| dc.subject | Hallucination Suppression | en |
| dc.subject | Large Language Models | cs |
| dc.subject | Retrieval Augmented Generation | cs |
| dc.subject | Hallucination Suppression | cs |
| dc.title | Transformer Neural Networks for Natural Language Processing | en |
| dc.title.alternative | Transformer Neural Networks for Natural Language Processing | cs |
| dc.type | Text | cs |
| dc.type.driver | masterThesis | en |
| dc.type.evskp | diplomová práce | cs |
| dcterms.dateAccepted | 2025-06-09 | cs |
| dcterms.modified | 2025-06-11-12:18:10 | cs |
| eprints.affiliatedInstitution.faculty | Fakulta elektrotechniky a komunikačních technologií | cs |
| sync.item.dbid | 168320 | en |
| sync.item.dbtype | ZP | en |
| sync.item.insts | 2025.08.27 02:03:32 | en |
| sync.item.modts | 2025.08.26 20:20:06 | en |
| thesis.discipline | bez specializace | cs |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
| thesis.level | Inženýrský | cs |
| thesis.name | Ing. | cs |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- final-thesis.pdf
- Size:
- 6.85 MB
- Format:
- Adobe Portable Document Format
- Description:
- file final-thesis.pdf
Loading...
- Name:
- appendix-1.zip
- Size:
- 8.34 KB
- Format:
- Unknown data format
- Description:
- file appendix-1.zip
Loading...
- Name:
- review_168320.html
- Size:
- 6.18 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_168320.html
