Transformer Neural Networks for Natural Language Processing

but.committeedoc. Ing. Jan Jeřábek, Ph.D. (místopředseda) M.Sc. Sara Ricci, Ph.D. (člen) Ing. Martin Štůsek, Ph.D. (člen) Ing. Pavel Paluřík (člen) Ing. Willi Lazarov (člen) prof. Ing. Miroslav Vozňák, Ph.D. (předseda)cs
but.defenceStudent presented the results of his thesis and the committee got familiar with reviewer's report. Student defended his Diploma Thesis and answered the questions from the members of the committee and the reviewer.cs
but.jazykangličtina (English)
but.programCommunications and Networking (Double-Degree)cs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorHošek, Jiříen
dc.contributor.authorTembo, Malingaen
dc.contributor.refereeJežek, Štěpánen
dc.date.created2025cs
dc.description.abstractThis thesis outlines a retrieval-augmented generation (RAG) pipeline tailored specifically for domain-specific documentation, with particular focus on telecoms config guides. The pipeline outlined here integrates structural pre-processing, dense semantic indexing, and controlled prompt composition to improve factual coherence in LLM responses. The primary contribution is the design of a preprocessing method, based on which semi-structured guides are converted into hierarchically divided JSON files, to enable context-aware retrieval over a vector database. The system is evaluated on 45 queries comprising question answering, summarization, and CLI code generation, on the Arista EOS 4.17.0F guide used as a test corpus. Empirical performance shows retrieval drastically reduces hallucination and increases semantic relevance, with GPT-4 + RAG producing 0.82 accuracy and 0.02 hallucination rate. For contrast, TinyLlama returned nonsensical output for over one-third of inputs. These findings demonstrate the effectiveness of grounded retrieval in aligning model output with technical reference material and illustrate the benefit of structured input preparation for high-fidelity generation in documentation-heavy applications.en
dc.description.abstractThis thesis outlines a retrieval-augmented generation (RAG) pipeline tailored specifically for domain-specific documentation, with particular focus on telecoms config guides. The pipeline outlined here integrates structural pre-processing, dense semantic indexing, and controlled prompt composition to improve factual coherence in LLM responses. The primary contribution is the design of a preprocessing method, based on which semi-structured guides are converted into hierarchically divided JSON files, to enable context-aware retrieval over a vector database. The system is evaluated on 45 queries comprising question answering, summarization, and CLI code generation, on the Arista EOS 4.17.0F guide used as a test corpus. Empirical performance shows retrieval drastically reduces hallucination and increases semantic relevance, with GPT-4 + RAG producing 0.82 accuracy and 0.02 hallucination rate. For contrast, TinyLlama returned nonsensical output for over one-third of inputs. These findings demonstrate the effectiveness of grounded retrieval in aligning model output with technical reference material and illustrate the benefit of structured input preparation for high-fidelity generation in documentation-heavy applications.cs
dc.description.markBcs
dc.identifier.citationTEMBO, M. Transformer Neural Networks for Natural Language Processing [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2025.cs
dc.identifier.other168320cs
dc.identifier.urihttp://hdl.handle.net/11012/251532
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologiícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectLarge Language Modelsen
dc.subjectRetrieval Augmented Generationen
dc.subjectHallucination Suppressionen
dc.subjectLarge Language Modelscs
dc.subjectRetrieval Augmented Generationcs
dc.subjectHallucination Suppressioncs
dc.titleTransformer Neural Networks for Natural Language Processingen
dc.title.alternativeTransformer Neural Networks for Natural Language Processingcs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2025-06-09cs
dcterms.modified2025-06-11-12:18:10cs
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs
sync.item.dbid168320en
sync.item.dbtypeZPen
sync.item.insts2025.08.27 02:03:32en
sync.item.modts2025.08.26 20:20:06en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs
thesis.levelInženýrskýcs
thesis.nameIng.cs

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
6.85 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.zip
Size:
8.34 KB
Format:
Unknown data format
Description:
file appendix-1.zip
Loading...
Thumbnail Image
Name:
review_168320.html
Size:
6.18 KB
Format:
Hypertext Markup Language
Description:
file review_168320.html

Collections