Absolute Stability of Neutral Systems with Lurie Type Nonlinearity
dc.contributor.author | Diblík, Josef | cs |
dc.contributor.author | Khusainov, Denys Ya. | cs |
dc.contributor.author | Shatyrko, Andrej | cs |
dc.contributor.author | Baštinec, Jaromír | cs |
dc.contributor.author | Svoboda, Zdeněk | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 11 | cs |
dc.date.issued | 2022-01-01 | cs |
dc.description.abstract | The paper studies absolute stability of neutral differential nonlinear systems (x) over dot (t) = Ax (T) + Bx (t - tau) +D(x) over dot (T - tau) + bf (sigma(t)), sigma(t) = c(T) x(t), t >= 0 where x is an unknown vector, A, B and D are constant matrices, b and c are column constant vectors, tau > 0 is a constant delay and f is a Lurie-type nonlinear function satisfying Lipschitz condition. Absolute stability is analyzed by a general Lyapunov-Krasovskii functional with the results compared with those previously known. | en |
dc.format | text | cs |
dc.format.extent | 726-740 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Advances in Nonlinear Analysis. 2022, vol. 11, issue 1, p. 726-740. | en |
dc.identifier.doi | 10.1515/anona-2021-0216 | cs |
dc.identifier.issn | 2191-950X | cs |
dc.identifier.orcid | 0000-0001-5009-316X | cs |
dc.identifier.orcid | 0000-0002-6228-3857 | cs |
dc.identifier.orcid | 0000-0001-6688-0512 | cs |
dc.identifier.other | 175471 | cs |
dc.identifier.researcherid | D-3530-2014 | cs |
dc.identifier.researcherid | D-9391-2018 | cs |
dc.identifier.researcherid | K-4698-2015 | cs |
dc.identifier.scopus | 6701633618 | cs |
dc.identifier.scopus | 6506293406 | cs |
dc.identifier.scopus | 9434706000 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/203988 | |
dc.language.iso | en | cs |
dc.publisher | De Gruyter | cs |
dc.relation.ispartof | Advances in Nonlinear Analysis | cs |
dc.relation.uri | https://www.degruyter.com/document/doi/10.1515/anona-2021-0216/html | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2191-950X/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Absolute stability | en |
dc.subject | exponential stability | en |
dc.subject | neutral differential system | en |
dc.subject | Lurie type nonlinearity | en |
dc.title | Absolute Stability of Neutral Systems with Lurie Type Nonlinearity | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-175471 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:50:43 | en |
sync.item.modts | 2025.01.17 15:17:31 | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotika | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1515_anona20210216.pdf
- Size:
- 500.42 KB
- Format:
- Adobe Portable Document Format
- Description:
- 10.1515_anona20210216.pdf