Absolute Stability of Neutral Systems with Lurie Type Nonlinearity

dc.contributor.authorDiblík, Josefcs
dc.contributor.authorKhusainov, Denys Ya.cs
dc.contributor.authorShatyrko, Andrejcs
dc.contributor.authorBaštinec, Jaromírcs
dc.contributor.authorSvoboda, Zdeněkcs
dc.coverage.issue1cs
dc.coverage.volume11cs
dc.date.issued2022-01-01cs
dc.description.abstractThe paper studies absolute stability of neutral differential nonlinear systems (x) over dot (t) = Ax (T) + Bx (t - tau) +D(x) over dot (T - tau) + bf (sigma(t)), sigma(t) = c(T) x(t), t >= 0 where x is an unknown vector, A, B and D are constant matrices, b and c are column constant vectors, tau > 0 is a constant delay and f is a Lurie-type nonlinear function satisfying Lipschitz condition. Absolute stability is analyzed by a general Lyapunov-Krasovskii functional with the results compared with those previously known.en
dc.description.abstractThe paper studies absolute stability of neutral differential nonlinear systems (x) over dot (t) = Ax (T) + Bx (t - tau) +D(x) over dot (T - tau) + bf (sigma(t)), sigma(t) = c(T) x(t), t >= 0 where x is an unknown vector, A, B and D are constant matrices, b and c are column constant vectors, tau > 0 is a constant delay and f is a Lurie-type nonlinear function satisfying Lipschitz condition. Absolute stability is analyzed by a general Lyapunov-Krasovskii functional with the results compared with those previously known.en
dc.formattextcs
dc.format.extent726-740cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvances in Nonlinear Analysis. 2022, vol. 11, issue 1, p. 726-740.en
dc.identifier.doi10.1515/anona-2021-0216cs
dc.identifier.issn2191-9496cs
dc.identifier.orcid0000-0001-5009-316Xcs
dc.identifier.orcid0000-0002-6228-3857cs
dc.identifier.orcid0000-0001-6688-0512cs
dc.identifier.other175471cs
dc.identifier.researcheridD-3530-2014cs
dc.identifier.researcheridD-9391-2018cs
dc.identifier.researcheridK-4698-2015cs
dc.identifier.scopus6701633618cs
dc.identifier.scopus6506293406cs
dc.identifier.scopus9434706000cs
dc.identifier.urihttp://hdl.handle.net/11012/203988
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofAdvances in Nonlinear Analysiscs
dc.relation.urihttps://www.degruyter.com/document/doi/10.1515/anona-2021-0216/htmlcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2191-9496/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectAbsolute stabilityen
dc.subjectexponential stabilityen
dc.subjectneutral differential systemen
dc.subjectLurie type nonlinearityen
dc.subjectAbsolute stability
dc.subjectexponential stability
dc.subjectneutral differential system
dc.subjectLurie type nonlinearity
dc.titleAbsolute Stability of Neutral Systems with Lurie Type Nonlinearityen
dc.title.alternativeAbsolute Stability of Neutral Systems with Lurie Type Nonlinearityen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-175471en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 15:17:43en
sync.item.modts2025.10.14 10:39:58en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotikacs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1515_anona20210216.pdf
Size:
500.42 KB
Format:
Adobe Portable Document Format
Description:
10.1515_anona20210216.pdf