Kroky ke zlepšení metod počítačového vidění pro analýzu dopravy
Loading...
Date
Authors
ORCID
Advisor
Referee
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Rostoucí urbanizace a zvyšující se počet vozidel na silnicích přetěžují tradiční systémy řízení dopravy na hranici jejich možností. Řešení nabízejí inteligentní dopravní systémy (ITS), které využívají pokročilé technologie ke zvýšení plynulosti a bezpečnosti dopravy. Zásadní oblastí, kterou je třeba zlepšit, však zůstává robustnost metod počítačového vidění v rámci ITS, které jsou nezbytné pro analýzu dopravy. Tato práce přispívá k této oblasti, konkrétně se zaměřuje na přesné (fine-grained) rozpoznávání vozidel, reidentifikaci vozidel, rozpoznávání registračních značek a monokulární měření rychlosti vozidel. Bylo představeno několik nových datových sad, vysoce ceněných výzkumnou komunitou, které rozšiřují hodnocení a zkoumání v každé z výše uvedených oblastí. Hlavní přínosy lze shrnout následovně: Nové technicky augmentace pro přesné rozpoznávání vozidel & rozšíření dříve publikované datové sady. Nová metoda agregace vizuálních znaků pro re-identifikaci vozidel & datová sada. Inovativní přístup k rozpoznávání registračních značek pomocí zarovnání registrační značky a holistického rozpoznávání & tři publikované datové sady. Největší datová sada pro měření rychlosti vozidel & stanovení výchozího vyhodnocení s dostupnými metodami vizuálního meření rychlosti. Klíčová zjištění této práce prokazují významné zvýšení přesnosti, účinnosti a robustnosti metod počítačového vidění aplikovaných na analýzu dopravy. Přínosy tohoto výzkumu byly oceněny na nejvýznamnějších konferencích a v časopisech v oblasti ITS a stanovují nové standardy pro budoucí práci. Tím, že tato práce posunula současný stav ITS a přispěla cennými zdroji pro probíhající výzkum, představuje zásadní krok směrem k udržitelnějším, efektivnějším a inteligentnějším dopravním systémům. Má důsledky pro řízení dopravy a širší společenský cíl vytvořit citlivější a přizpůsobivější městské prostředí.
The rapid urbanization and increasing number of vehicles on the roads have stretched traditional traffic management systems to their limits. Intelligent Transportation Systems (ITS) offer a solution, utilizing advanced technologies to enhance traffic flow and safety. The robustness of computer vision methods within ITS, essential for traffic analysis, remains a crucial area for improvement. This thesis substantially contributes to this field, specifically focusing on Vehicle Fine-Grained Recognition, Vehicle Re-Identification, License Plate Recognition, and Monocular Vehicle Speed Measurement. Several new datasets, highly appreciated by the research community, were introduced, enhancing the evaluation and exploration within each domain mentioned earlier. The main contributions can be summarized as follows: Novel method for aggregation of visual features for vehicle re-identification & dataset. Innovative approach to license plate recognition using alignment of the license plate and holistic recognition & three published datasets. Novel augmentation techniques for vehicle fine-grained recognition & extension of previously published dataset. The biggest dataset for vehicle speed measurement & baseline evaluation with state-of-the-art methods. The key findings of this work demonstrate a significant enhancement in the accuracy, efficiency, and robustness of computer vision methods applied to traffic analysis. This research's contributions have been recognized at top conferences and journals in ITS, setting new standards for future work. By advancing the current state of ITS and contributing valuable resources for ongoing research, this thesis represents a step towards more sustainable and efficient intelligent transportation systems.
The rapid urbanization and increasing number of vehicles on the roads have stretched traditional traffic management systems to their limits. Intelligent Transportation Systems (ITS) offer a solution, utilizing advanced technologies to enhance traffic flow and safety. The robustness of computer vision methods within ITS, essential for traffic analysis, remains a crucial area for improvement. This thesis substantially contributes to this field, specifically focusing on Vehicle Fine-Grained Recognition, Vehicle Re-Identification, License Plate Recognition, and Monocular Vehicle Speed Measurement. Several new datasets, highly appreciated by the research community, were introduced, enhancing the evaluation and exploration within each domain mentioned earlier. The main contributions can be summarized as follows: Novel method for aggregation of visual features for vehicle re-identification & dataset. Innovative approach to license plate recognition using alignment of the license plate and holistic recognition & three published datasets. Novel augmentation techniques for vehicle fine-grained recognition & extension of previously published dataset. The biggest dataset for vehicle speed measurement & baseline evaluation with state-of-the-art methods. The key findings of this work demonstrate a significant enhancement in the accuracy, efficiency, and robustness of computer vision methods applied to traffic analysis. This research's contributions have been recognized at top conferences and journals in ITS, setting new standards for future work. By advancing the current state of ITS and contributing valuable resources for ongoing research, this thesis represents a step towards more sustainable and efficient intelligent transportation systems.
Description
Keywords
analýza dopravy, počítačové vidění, rozpoznávání typu vozidel, re-identifikace vozidel, měření rychlosti vozidel, rozpoznávání registračních značek, zarovnání registračních značek, traffic analysis, computer vision, vehicle fine-grained recognition, vehicle re-identification, vehicle speed measurement, license plate recognition, license plate alignment
Citation
ŠPAŇHEL, J. Kroky ke zlepšení metod počítačového vidění pro analýzu dopravy [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2024.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Výpočetní technika a informatika
Comittee
prof. Ing. Lukáš Sekanina, Ph.D. (předseda)
doc. Ing. Martin Čadík, Ph.D. (člen)
doc. RNDr. Petr Matula, Ph.D. (člen)
doc. RNDr. Elena Šikudová, Ph.D. (člen)
prof. Dr. Ing. Robert Sablatnig (člen)
Date of acceptance
2024-05-13
Defence
Student přednesl cíle a výsledky, kterých v rámci řešení disertační práce dosáhl. V rozpravě student odpověděl na otázky komise a oponentů. Diskuze je zaznamenána na diskuzních lístcích, které jsou přílohou protokolu. Počet diskuzních lístků: 4. Komise se v závěru jednomyslně usnesla, že student splnil podmínky pro udělení akademického titulu doktor.
The student presented the goals and results, which he achieved within the solution of the dissertation. The student has competently answered the questions of the committee members and reviewers. The discussion is recorded on the discussion sheets, which are attached to the protocol. Number of discussion sheets: 4. The committee has agreed unanimously that the student has fulfilled requirements for being awarded the academic title Ph.D.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení