Predictive maintenance with digital model

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorKantor, Matěj
dc.contributor.authorHusák, Michal
dc.date.accessioned2025-07-30T10:00:54Z
dc.date.available2025-07-30T10:00:54Z
dc.date.issued2025cs
dc.description.abstractThis paper addresses the development of a Predictive Maintenance (PdM) detection algorithm applied to a digital model intended for PdM purposes of a heat exchanger station. The detection algorithm has been designed utilising data from a PLC measurement programme in conjunction with a digital model developed using MATLAB Simulink. Machine Learning (ML) techniques, specifically Support Vector Machines (SVM), were employed like two class classificator to identify anomalies. The SVM algorithm classified the measurement points into fault and normal operating states based on modelled temperature values, the Root Mean Square Error (RMSE) of temperatures within the primary circuit. The normal operating states is defined by digital model introduced in [4]. Anomaly state is simulated by serial clogging valve V3 in primary circuit.en
dc.formattextcs
dc.format.extent87-90cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 87-90. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255250
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectDigital Modelen
dc.subjectHeat Exchangeren
dc.subjectMachine Learningen
dc.subjectPredictive Maintenanceen
dc.subjectSupport Vector Machinesen
dc.titlePredictive maintenance with digital modelen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
87-Kantor.pdf
Size:
849.56 KB
Format:
Adobe Portable Document Format