Crossflow polymeric hollow fiber heat exchanger: fiber tension effects on heat transfer and airside pressure drop

dc.contributor.authorKroulíková, Terezacs
dc.contributor.authorMráz, Kryštofcs
dc.contributor.authorHvožďa, Jiřícs
dc.contributor.authorBoháček, Jancs
dc.coverage.issue8cs
dc.coverage.volume149cs
dc.date.accessioned2024-05-14T06:45:31Z
dc.date.available2024-05-14T06:45:31Z
dc.date.issued2024-03-01cs
dc.description.abstractIn various applications, a polymeric hollow fber heat exchanger (PHFHE) is a competitive alternative to a conventional heat exchanger (HE). Standard empirical models for predicting the crossfow tube HE characteristics are defned for devices with rigid tubes with relatively large diameters compared to the polymeric hollow fbers with an outer diameter of around 1 mm. This study examines the impact of tension force on airside heat transfer rate and pressure drop in a crossfow PHFHE. The tension force infuences the stifness of the fexible polymeric fbers and their response to applied airfow. Two liquid– gas PHFHEs were designed and manufactured to ensure uniformity of the fbers' arrangement (inline and staggered). An experimental stand enabling the application of defned tension force in the range of 0–9000 N was designed, manufactured and placed into the calorimetric tunnel, where heat transfer rate and pressure drop measurement were performed with varying air velocity between 2 and 8 ms1 (corresponding to Reynolds number of 240–970). Among our key fndings was that the elongation of the fbers due to thermal expansion or stress relaxation has a considerable impact on the fbers' arrangement and resulting fuid fow. Moreover, the application of tension force yielded no substantial change in air pressure drop; however, it led to a notable enhancement in heat transfer rate. Specifcally, under a maximal tension force of 9000 N, the heat transfer rate increased by around 11% compared to the unloaded state.en
dc.formattextcs
dc.format.extent3155-3164cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Thermal Analysis and Calorimetry. 2024, vol. 149, issue 8, p. 3155-3164.en
dc.identifier.doi10.1007/s10973-024-12956-5cs
dc.identifier.issn1588-2926cs
dc.identifier.orcid0000-0002-6112-8724cs
dc.identifier.orcid0000-0002-4521-4438cs
dc.identifier.orcid0000-0002-4444-4485cs
dc.identifier.orcid0000-0003-3319-4254cs
dc.identifier.other188153cs
dc.identifier.researcheridAAH-3385-2020cs
dc.identifier.researcheridAAZ-5704-2021cs
dc.identifier.researcheridAAQ-1466-2021cs
dc.identifier.researcheridC-2078-2018cs
dc.identifier.scopus57210947632cs
dc.identifier.scopus57226704481cs
dc.identifier.scopus57222749606cs
dc.identifier.scopus55213548700cs
dc.identifier.urihttps://hdl.handle.net/11012/245515
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofJournal of Thermal Analysis and Calorimetrycs
dc.relation.urihttps://link.springer.com/article/10.1007/s10973-024-12956-5cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1588-2926/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectFiber tensionen
dc.subjectFlow-induced vibrationen
dc.subjectHeat exchangeren
dc.subjectHeat transferen
dc.subjectPolymeric hollow fbersen
dc.subjectPressure dropen
dc.titleCrossflow polymeric hollow fiber heat exchanger: fiber tension effects on heat transfer and airside pressure dropen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-188153en
sync.item.dbtypeVAVen
sync.item.insts2024.05.14 08:45:30en
sync.item.modts2024.05.14 08:13:56en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10973024129565.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format
Description:
file s10973024129565.pdf