Experimental and numerical study on the thermal performance of polycarbonate panels

Loading...
Thumbnail Image

Authors

Čekon, Miroslav
Šikula, Ondřej

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Polycarbonate panels are a specific type of transparent insulation material that can be usefully integrated in building envelope structures. As the applications for such systems are increasing, it was necessary to analyse in detail data for materials which are already available to improve their thermal performance. In this paper the experimental campaign was based on the detailed characterization of the equivalent thermal conductivity parameters of several representative polycarbonate panels. The dependence of the equivalent thermal conductivity on the temperature and different angles of inclination are analyzed. Increasing the angle of the investigated polycarbonate panels changed the thermal conductivity parameters to a very minor degree. On the other hand, the effect of temperature on the thermal properties is proved to be significant and the conversion temperature coefficient is provided in this regard. The computational fluid dynamics (CFD) numerical analysis is employed to validate three-dimensional CFD models and simulate the thermal performance of low-e panels for it to theoretically improve their overall thermal parameters. When applying low-e functionality, depending on the type of polycarbonate panel, the equivalent thermal conductivity was found to range from 0.03750W/(m·K) to 0.04172W/(m·K), representing a reduction ranging from 43% to 24%.
Polycarbonate panels are a specific type of transparent insulation material that can be usefully integrated in building envelope structures. As the applications for such systems are increasing, it was necessary to analyse in detail data for materials which are already available to improve their thermal performance. In this paper the experimental campaign was based on the detailed characterization of the equivalent thermal conductivity parameters of several representative polycarbonate panels. The dependence of the equivalent thermal conductivity on the temperature and different angles of inclination are analyzed. Increasing the angle of the investigated polycarbonate panels changed the thermal conductivity parameters to a very minor degree. On the other hand, the effect of temperature on the thermal properties is proved to be significant and the conversion temperature coefficient is provided in this regard. The computational fluid dynamics (CFD) numerical analysis is employed to validate three-dimensional CFD models and simulate the thermal performance of low-e panels for it to theoretically improve their overall thermal parameters. When applying low-e functionality, depending on the type of polycarbonate panel, the equivalent thermal conductivity was found to range from 0.03750W/(m·K) to 0.04172W/(m·K), representing a reduction ranging from 43% to 24%.

Description

Citation

Journal of Building Engineering. 2020, vol. 32, issue 1, p. 1-14.
https://www.sciencedirect.com/science/article/pii/S2352710220309700?via%3Dihub

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO