Calibration of models predicting the load-bearing capacity of bonded anchors using a genetic algorithm

dc.contributor.authorBarnat, Jancs
dc.contributor.authorPřibyl, Otocs
dc.contributor.authorVild, Martincs
dc.contributor.authorŠmak, Milancs
dc.contributor.authorRubina, Alešcs
dc.contributor.authorBajer, Miroslavcs
dc.coverage.issueJuly 2024cs
dc.coverage.volume20cs
dc.date.issued2024-05-09cs
dc.description.abstractThe paper deals with the topic of resistance of bonded headless post-installed anchors to uncracked concrete, in particular with the calibration of selected models predicting their ultimate tensile load. In particular, the optimization of two models for predicting the tensile capacity of an anchor is investigated in this paper. First model is based on the determination of the ultimate capacity based on separated failure modes (failure of the extraction of concrete cone and the bond failure). The second optimised model, proposed in this paper, summarizes the effect of both of these parameters into a single exponential function. A model combining the effect of concrete strength and adhesive strength has the potential to better capture the true nature of failure in which both materials are involved. In order to compare these models, an extensive database of experimental results was compiled (including own experiments and also results from various authors). The calibration consisted in finding the most appropriate values of the individual input parameters of the models to fit the experimental results as closely as possible. The models for predicting the tensile capacity of anchors are multiparametric. Therefore, a method using elements of genetic algorithms was used for optimization, suitable for this purpose. Several possible statistical evaluation criteria were used for the evaluation of the fit of the models. The optimization of the models showed that the proposed model combining the effect of concrete strength and bond strength can be optimized to better fit the experimental results.en
dc.formattextcs
dc.format.extent1-23cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationCase Studies in Construction Materials. 2024, vol. 20, issue July 2024, p. 1-23.en
dc.identifier.doi10.1016/j.cscm.2024.e03252cs
dc.identifier.issn2214-5095cs
dc.identifier.orcid0000-0002-0670-6624cs
dc.identifier.orcid0000-0003-3071-8489cs
dc.identifier.orcid0000-0002-2327-3162cs
dc.identifier.orcid0000-0001-5305-5804cs
dc.identifier.orcid0000-0002-3018-2189cs
dc.identifier.orcid0000-0003-2288-4719cs
dc.identifier.other188535cs
dc.identifier.researcheridB-4589-2014cs
dc.identifier.researcheridAAD-8120-2019cs
dc.identifier.scopus55001413700cs
dc.identifier.scopus56188615700cs
dc.identifier.scopus54782093200cs
dc.identifier.urihttp://hdl.handle.net/11012/245531
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofCase Studies in Construction Materialscs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2214509524004030cs
dc.rightsCreative Commons Attribution-NonCommercial 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2214-5095/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/cs
dc.subjectBonded anchorsen
dc.subjectload-bearing capacityen
dc.subjectcalibrationen
dc.subjectmodels of predictionen
dc.subjectgenetic algorithmen
dc.titleCalibration of models predicting the load-bearing capacity of bonded anchors using a genetic algorithmen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-188535en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:44:41en
sync.item.modts2025.01.17 16:37:42en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometriecs
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav kovových a dřevěných konstrukcícs
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav technických zařízení budovcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2214509524004030main.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S2214509524004030main.pdf