Object Detection Networks For Localization And Classification Of Intracranial Hemorrhages

Loading...
Thumbnail Image

Date

Authors

Nemcek, Jakub

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

Intracranial hemorrhages represent life-threatening brain injuries. This paper presents twostate-of-the-art object detection systems (Faster R-CNN and YOLO v2) which are trained to localizeand classify hemorrhages in axial head CT slices by providing labelled rectangular bounding boxes.Publicly available datasets of head CT data and ground truth bounding boxes are used to evaluate andcompare the performance of both detectors. The Faster R-CNN shows better results by achieving anaverage Jaccard coefficient of 58.7 %.

Description

Citation

Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 116-120. ISBN 978-80-214-5943-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO