Object Detection Networks For Localization And Classification Of Intracranial Hemorrhages
Loading...
Date
2021
Authors
Nemcek, Jakub
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
Intracranial hemorrhages represent life-threatening brain injuries. This paper presents twostate-of-the-art object detection systems (Faster R-CNN and YOLO v2) which are trained to localizeand classify hemorrhages in axial head CT slices by providing labelled rectangular bounding boxes.Publicly available datasets of head CT data and ground truth bounding boxes are used to evaluate andcompare the performance of both detectors. The Faster R-CNN shows better results by achieving anaverage Jaccard coefficient of 58.7 %.
Description
Citation
Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 116-120. ISBN 978-80-214-5943-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií