Biaxial porosity gradient and cell size adjustment improve energy absorption in rigid and flexible 3D-printed reentrant honeycomb auxetic structures

dc.contributor.authorŠtaffová, Martinacs
dc.contributor.authorOndreáš, Františekcs
dc.contributor.authorŽídek, Jancs
dc.contributor.authorJančář, Josefcs
dc.contributor.authorLepcio, Petrcs
dc.coverage.issue6cs
dc.coverage.volume22cs
dc.date.accessioned2025-02-03T14:38:32Z
dc.date.available2025-02-03T14:38:32Z
dc.date.issued2024-06-01cs
dc.description.abstractThis paper compares different uniaxial and biaxial graded designs of auxetic reentrant honeycomb structures to enhance their mechanical properties, especially the specific energy absorption under compressive load. The lattice structures were 3D printed using the vat photopolymerization masked-stereolithography technique from two different materials - tough (OR) and flexible (FR). The results were evaluated from a material and structural point of view, investigating the effect of porosity, cell number, size, graded design, and fracture mode. The universally best energy-absorbing performance was found in a biaxially graded structure with a center-wise location of the highest local porosity. Depending on the used resin, its energy absorption capacity was up to 2-3 times enhanced compared to a reference uniform-porosity auxetic design. The presented data constitutes a fundamental understanding of auxetic structures and identifies practical approaches for tuning the auxetic structures' performance regarding their mechanical response. Finally, this study demonstrates the potential of shape versatility offered by 3D printing and other additive manufacturing techniques.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationResults in Engineering. 2024, vol. 22, issue 6, p. 1-13.en
dc.identifier.doi10.1016/j.rineng.2024.102249cs
dc.identifier.issn2590-1230cs
dc.identifier.orcid0000-0002-3586-9764cs
dc.identifier.orcid0000-0003-3845-1766cs
dc.identifier.orcid0000-0003-1206-6747cs
dc.identifier.orcid0000-0002-7056-5571cs
dc.identifier.other189995cs
dc.identifier.researcheridAAC-2596-2019cs
dc.identifier.researcheridAAB-9822-2019cs
dc.identifier.scopus55990617200cs
dc.identifier.scopus55991983000cs
dc.identifier.urihttps://hdl.handle.net/11012/249895
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofResults in Engineeringcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2590123024005048cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2590-1230/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectReentrant auxetic structureen
dc.subjectModellingen
dc.subjectMechanical testingen
dc.subjectSimulationen
dc.subjectFractureen
dc.titleBiaxial porosity gradient and cell size adjustment improve energy absorption in rigid and flexible 3D-printed reentrant honeycomb auxetic structuresen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/LU/LUAUS24208cs
sync.item.dbidVAV-189995en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:38:32en
sync.item.modts2025.01.31 08:32:07en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálůcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé polymerní materiály a kompozitcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé biomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2590123024005048main.pdf
Size:
11.71 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S2590123024005048main.pdf