DC Underwater Capillary Discharge With Symmetrical Hole: Diagnostics and Pumping Effect

Loading...
Thumbnail Image

Authors

Totová, Ivana
Krčma, František
Nikiforov, Anton
Leys, Christophe

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

Capillary discharge investigated by this work was created in the reactor using positive half-cycle of AC high voltage up to 2 kV. Electric field was created between two electrodes which were separated by the dielectric ceramic barrier with a symmetrical cylindrical hole (diameter of 1 mm, length of 5 mm) in it. When voltage reached the value sufficient for liquid breakdown, the discharge appeared initially in bubbles of evaporated solution in the hole vicinity and spread further into the liquid volume. After the rise of discharge, two kinds of plasma channels (streamers) propagated towards electrodes from the pin-hole: longer positive streamers on the side with the cathode (analogically as in the positive corona discharge) and shorter negative streamers (like negative corona discharge). These streamer kinds differed especially in the energy dissipation originating from different electron velocities in plasma channels due to electron collisions with positive particles accelerating or decelerating electron avalanches and it gave rise of a significant pump effect. The weighing of flowing drops of aqueous solution was provided during the pump effect. Influence of parameters such as initial solution conductivity or input power on this effect as well as diagnostics by optical emission spectroscopy and electrical characteristics have been investigated.
Capillary discharge investigated by this work was created in the reactor using positive half-cycle of AC high voltage up to 2 kV. Electric field was created between two electrodes which were separated by the dielectric ceramic barrier with a symmetrical cylindrical hole (diameter of 1 mm, length of 5 mm) in it. When voltage reached the value sufficient for liquid breakdown, the discharge appeared initially in bubbles of evaporated solution in the hole vicinity and spread further into the liquid volume. After the rise of discharge, two kinds of plasma channels (streamers) propagated towards electrodes from the pin-hole: longer positive streamers on the side with the cathode (analogically as in the positive corona discharge) and shorter negative streamers (like negative corona discharge). These streamer kinds differed especially in the energy dissipation originating from different electron velocities in plasma channels due to electron collisions with positive particles accelerating or decelerating electron avalanches and it gave rise of a significant pump effect. The weighing of flowing drops of aqueous solution was provided during the pump effect. Influence of parameters such as initial solution conductivity or input power on this effect as well as diagnostics by optical emission spectroscopy and electrical characteristics have been investigated.

Description

Citation

Journal of Physics: Conference Series. 2014, vol. 516, issue 1, p. 012007-012007.
http://iopscience.iop.org/article/10.1088/1742-6596/516/1/012007

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO