Analysis Of The Training Quality Of Brain Tumour Segmentation In Deep Learning Through Similarity

Loading...
Thumbnail Image

Date

Authors

Ustsinau, Usevalad

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Manual segmentation of brain tumours in MR images is a time-consuming process, which increases the required time for the research of tumour development and its lesion on the cognitive functions of human. Recently there were developed modern solutions for this problem by using a fully automatic segmentation algorithm. As far as segmentation quality plays a highly important role for doctors, we have to train such a model with a significant amount of care to quality. In this paper, it is provided with an analysis of the training quality using state-of-art technology - convolutional neural network U-Net and with training on manually segmented data. The experiment has shown the effectiveness of the provided model and performed 50 training cases with the following analysis through the similarity. The results were put on the similarity matrix and dendrogram. The proposed outcome gives us certain ideas for future improving the quality of image segmentation.

Description

Citation

Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 229-232. ISBN 978-80-214-5867-3
https://conf.feec.vutbr.cz/eeict/EEICT2020

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO