Assessing Cryptographic Random Number Generators using Machine Learning

but.committeedoc. Ing. Jan Jeřábek, Ph.D. (místopředseda) M.Sc. Sara Ricci, Ph.D. (člen) Ing. Martin Štůsek, Ph.D. (člen) Ing. Pavel Paluřík (člen) Ing. Willi Lazarov (člen) prof. Ing. Miroslav Vozňák, Ph.D. (předseda)cs
but.defenceStudent presented the results of his thesis and the committee got familiar with reviewer's report. Student defended his Diploma Thesis and answered the questions from the members of the committee and the reviewer.cs
but.jazykangličtina (English)
but.programCommunications and Networking (Double-Degree)cs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorRicci, Saraen
dc.contributor.authorGradoš, Matejen
dc.contributor.refereeBurget, Radimen
dc.date.created2025cs
dc.description.abstractThis thesis investigates the intersection of machine learning and cryptography, with a particular emphasis on the capacity of neural networks to model cryptographic hash functions and evaluation of randomness in binary sequences. The feasibility of training neural networks to replicate the behavior of cryptographic hash functions, focusing on a reduced variant of the SHA-3 algorithm. Empirical results indicate that while neural networks can accurately approximate steps of the Keccak- permutation, they exhibit limited generalization capability across multiple rounds of the Keccak- function. In the second phase, the focus shifts to the application of machine learning techniques for the analysis of randomness in binary sequences. Utilizing transformer-based architectures, thesis demonstrates that these models can achieve high predictive accuracy on the final bit of a sequence, including those classified random by conventional statistical test suites such as NIST SP800-22. These findings suggest that machine learning models may serve as practical complementary tools to traditional statistical methods, offering a novel approach for uncovering subtle, exploitable patterns that dodge standard randomness assessments.en
dc.description.abstractThis thesis investigates the intersection of machine learning and cryptography, with a particular emphasis on the capacity of neural networks to model cryptographic hash functions and evaluation of randomness in binary sequences. The feasibility of training neural networks to replicate the behavior of cryptographic hash functions, focusing on a reduced variant of the SHA-3 algorithm. Empirical results indicate that while neural networks can accurately approximate steps of the Keccak- permutation, they exhibit limited generalization capability across multiple rounds of the Keccak- function. In the second phase, the focus shifts to the application of machine learning techniques for the analysis of randomness in binary sequences. Utilizing transformer-based architectures, thesis demonstrates that these models can achieve high predictive accuracy on the final bit of a sequence, including those classified random by conventional statistical test suites such as NIST SP800-22. These findings suggest that machine learning models may serve as practical complementary tools to traditional statistical methods, offering a novel approach for uncovering subtle, exploitable patterns that dodge standard randomness assessments.cs
dc.description.markAcs
dc.identifier.citationGRADOŠ, M. Assessing Cryptographic Random Number Generators using Machine Learning [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2025.cs
dc.identifier.other167280cs
dc.identifier.urihttp://hdl.handle.net/11012/251477
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologiícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectMachine Learningen
dc.subjectNeural Networksen
dc.subjectCryptographic Hash Functionsen
dc.subjectSecure Hash Algorithmen
dc.subjectSHA-3en
dc.subjectSHA-3 Toy Functionen
dc.subjectrandomnessen
dc.subjectTransformer architectureen
dc.subjecthigh entropyen
dc.subjectMachine Learningcs
dc.subjectNeural Networkscs
dc.subjectCryptographic Hash Functionscs
dc.subjectSecure Hash Algorithmcs
dc.subjectSHA-3cs
dc.subjectSHA-3 Toy Functioncs
dc.subjectrandomnesscs
dc.subjectTransformer architecturecs
dc.subjecthigh entropycs
dc.titleAssessing Cryptographic Random Number Generators using Machine Learningen
dc.title.alternativeAssessing Cryptographic Random Number Generators using Machine Learningcs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2025-06-09cs
dcterms.modified2025-06-13-12:46:33cs
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs
sync.item.dbid167280en
sync.item.dbtypeZPen
sync.item.insts2025.08.27 02:03:19en
sync.item.modts2025.08.26 20:01:11en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs
thesis.levelInženýrskýcs
thesis.nameIng.cs

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
3.62 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.zip
Size:
136.38 KB
Format:
Unknown data format
Description:
file appendix-1.zip
Loading...
Thumbnail Image
Name:
review_167280.html
Size:
4.74 KB
Format:
Hypertext Markup Language
Description:
file review_167280.html

Collections