Assessing Cryptographic Random Number Generators using Machine Learning
| but.committee | doc. Ing. Jan Jeřábek, Ph.D. (místopředseda) M.Sc. Sara Ricci, Ph.D. (člen) Ing. Martin Štůsek, Ph.D. (člen) Ing. Pavel Paluřík (člen) Ing. Willi Lazarov (člen) prof. Ing. Miroslav Vozňák, Ph.D. (předseda) | cs |
| but.defence | Student presented the results of his thesis and the committee got familiar with reviewer's report. Student defended his Diploma Thesis and answered the questions from the members of the committee and the reviewer. | cs |
| but.jazyk | angličtina (English) | |
| but.program | Communications and Networking (Double-Degree) | cs |
| but.result | práce byla úspěšně obhájena | cs |
| dc.contributor.advisor | Ricci, Sara | en |
| dc.contributor.author | Gradoš, Matej | en |
| dc.contributor.referee | Burget, Radim | en |
| dc.date.created | 2025 | cs |
| dc.description.abstract | This thesis investigates the intersection of machine learning and cryptography, with a particular emphasis on the capacity of neural networks to model cryptographic hash functions and evaluation of randomness in binary sequences. The feasibility of training neural networks to replicate the behavior of cryptographic hash functions, focusing on a reduced variant of the SHA-3 algorithm. Empirical results indicate that while neural networks can accurately approximate steps of the Keccak- permutation, they exhibit limited generalization capability across multiple rounds of the Keccak- function. In the second phase, the focus shifts to the application of machine learning techniques for the analysis of randomness in binary sequences. Utilizing transformer-based architectures, thesis demonstrates that these models can achieve high predictive accuracy on the final bit of a sequence, including those classified random by conventional statistical test suites such as NIST SP800-22. These findings suggest that machine learning models may serve as practical complementary tools to traditional statistical methods, offering a novel approach for uncovering subtle, exploitable patterns that dodge standard randomness assessments. | en |
| dc.description.abstract | This thesis investigates the intersection of machine learning and cryptography, with a particular emphasis on the capacity of neural networks to model cryptographic hash functions and evaluation of randomness in binary sequences. The feasibility of training neural networks to replicate the behavior of cryptographic hash functions, focusing on a reduced variant of the SHA-3 algorithm. Empirical results indicate that while neural networks can accurately approximate steps of the Keccak- permutation, they exhibit limited generalization capability across multiple rounds of the Keccak- function. In the second phase, the focus shifts to the application of machine learning techniques for the analysis of randomness in binary sequences. Utilizing transformer-based architectures, thesis demonstrates that these models can achieve high predictive accuracy on the final bit of a sequence, including those classified random by conventional statistical test suites such as NIST SP800-22. These findings suggest that machine learning models may serve as practical complementary tools to traditional statistical methods, offering a novel approach for uncovering subtle, exploitable patterns that dodge standard randomness assessments. | cs |
| dc.description.mark | A | cs |
| dc.identifier.citation | GRADOŠ, M. Assessing Cryptographic Random Number Generators using Machine Learning [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2025. | cs |
| dc.identifier.other | 167280 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/251477 | |
| dc.language.iso | en | cs |
| dc.publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií | cs |
| dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
| dc.subject | Machine Learning | en |
| dc.subject | Neural Networks | en |
| dc.subject | Cryptographic Hash Functions | en |
| dc.subject | Secure Hash Algorithm | en |
| dc.subject | SHA-3 | en |
| dc.subject | SHA-3 Toy Function | en |
| dc.subject | randomness | en |
| dc.subject | Transformer architecture | en |
| dc.subject | high entropy | en |
| dc.subject | Machine Learning | cs |
| dc.subject | Neural Networks | cs |
| dc.subject | Cryptographic Hash Functions | cs |
| dc.subject | Secure Hash Algorithm | cs |
| dc.subject | SHA-3 | cs |
| dc.subject | SHA-3 Toy Function | cs |
| dc.subject | randomness | cs |
| dc.subject | Transformer architecture | cs |
| dc.subject | high entropy | cs |
| dc.title | Assessing Cryptographic Random Number Generators using Machine Learning | en |
| dc.title.alternative | Assessing Cryptographic Random Number Generators using Machine Learning | cs |
| dc.type | Text | cs |
| dc.type.driver | masterThesis | en |
| dc.type.evskp | diplomová práce | cs |
| dcterms.dateAccepted | 2025-06-09 | cs |
| dcterms.modified | 2025-06-13-12:46:33 | cs |
| eprints.affiliatedInstitution.faculty | Fakulta elektrotechniky a komunikačních technologií | cs |
| sync.item.dbid | 167280 | en |
| sync.item.dbtype | ZP | en |
| sync.item.insts | 2025.08.27 02:03:19 | en |
| sync.item.modts | 2025.08.26 20:01:11 | en |
| thesis.discipline | bez specializace | cs |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
| thesis.level | Inženýrský | cs |
| thesis.name | Ing. | cs |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- final-thesis.pdf
- Size:
- 3.62 MB
- Format:
- Adobe Portable Document Format
- Description:
- file final-thesis.pdf
Loading...
- Name:
- appendix-1.zip
- Size:
- 136.38 KB
- Format:
- Unknown data format
- Description:
- file appendix-1.zip
Loading...
- Name:
- review_167280.html
- Size:
- 4.74 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_167280.html
