In-Bed Posture Classification

but.event.date27.04.2021cs
but.event.titleSTUDENT EEICT 2021cs
dc.contributor.authorHusák, Michal
dc.date.accessioned2021-07-21T07:07:00Z
dc.date.available2021-07-21T07:07:00Z
dc.date.issued2021cs
dc.description.abstractThe growing trend of the population age contributes to the accumulation of patients insocial facilities and in-home care, which leads to growing chronic diseases. Modern systems try toimprove the effectiveness of health care interventions. Our work aims to create a widely applicableplatform that combines the measurement of in-bed position with another’s negative states. All thesephysical influences are mainly the cause of chronic tissue damage (pressure ulcers). Processing ofthe pressure distribution on the bed is a more dimension problem. The mentioned data are multimodal.Therefore, we used the machine learning (ML) method to obtain the properties.en
dc.formattextcs
dc.format.extent410-414cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 410-414. ISBN 978-80-214-5942-7cs
dc.identifier.isbn978-80-214-5942-7
dc.identifier.urihttp://hdl.handle.net/11012/200791
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 27st Conference STUDENT EEICT 2021: General papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazenics
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectDecubitusen
dc.subjectMatrassen
dc.subjectMachine Learningen
dc.subjectBody posture classificationen
dc.titleIn-Bed Posture Classificationen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
410_eeict-2021_1.pdf
Size:
259.28 KB
Format:
Adobe Portable Document Format
Description: