Quartic polynomials with a given discriminant

dc.contributor.authorKlaška, Jiřícs
dc.coverage.issue1cs
dc.coverage.volume72cs
dc.date.accessioned2022-03-14T11:53:31Z
dc.date.available2022-03-14T11:53:31Z
dc.date.issued2022-02-21cs
dc.description.abstractLet $ 0\ne D \in \Bbb Z$ and let $Q_D$ be the set of all monic quartic polynomials $ x^4 +ax^3 +bx^2 + cx + d \in \Bbb Z[x]$ with the discriminant equal to $D$. In this paper we will devise a method for determining the set $Q_D$. Our method is strongly related to the theory of integral points on elliptic curves. The well-known Mordell's equation plays an important role as well in our considerations. Finally, some new conjectures will be included inspired by extensive calculation on a computer.en
dc.formattextcs
dc.format.extent35-50cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMathematica Slovaca. 2022, vol. 72, issue 1, p. 35-50.en
dc.identifier.doi10.1515/ms-2022-0003cs
dc.identifier.issn1337-2211cs
dc.identifier.other176796cs
dc.identifier.urihttp://hdl.handle.net/11012/203964
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofMathematica Slovacacs
dc.relation.urihttps://www.degruyter.com/document/doi/10.1515/ms-2022-0003/htmlcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1337-2211/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectquartic polynomialen
dc.subjectdiscriminanten
dc.subjectMordell's equationen
dc.subjectelliptic curveen
dc.titleQuartic polynomials with a given discriminanten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-176796en
sync.item.dbtypeVAVen
sync.item.insts2022.03.23 16:56:01en
sync.item.modts2022.03.23 16:15:05en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1515_ms20220003.pdf
Size:
383.66 KB
Format:
Adobe Portable Document Format
Description:
10.1515_ms20220003.pdf