Effect of Solution Annealing on Fatigue Crack Propagation in the AISI 304L TRIP Steel

Loading...
Thumbnail Image

Authors

Jambor, Michal
Vojtek, Tomáš
Pokorný, Pavel
Šmíd, Miroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Fatigue crack propagation in near-threshold regime was studied in the 304L austenitic stainless steel in two microstructural states: as-received (AR) with finer microstructure and low susceptibility to the transformation-induced plasticity (TRIP) effect, and solution-annealed (SA) with coarser microstructure and higher susceptibility to TRIP. At the load ratio R = 0.1 the threshold was higher in the SA state than in the AR state due to coarser grains and possibly the TRIP effect. In order to clarify the role of crack closure, experiments at R = 0.7 were done. The threshold in the SA state was still higher by 1 MPa center dot m(0.5). This effect was identified as crack tip shielding induced by phase transformation, an example of a non-closure shielding effect. Higher resistance to crack growth in the SA state was attributed to promoted martensitic transformation in non-favorable oriented grain families rather than thicker martensite layers in the crack path area. The conclusions were verified by experiments at R = 0.7 and temperature 150 degrees C > M-s which did not reveal any notable difference in thresholds. However, the threshold values were affected by the load-shedding gradient C = -d Delta K/da, which had to be equalized in both experimental setups inside and outside the furnace.
Fatigue crack propagation in near-threshold regime was studied in the 304L austenitic stainless steel in two microstructural states: as-received (AR) with finer microstructure and low susceptibility to the transformation-induced plasticity (TRIP) effect, and solution-annealed (SA) with coarser microstructure and higher susceptibility to TRIP. At the load ratio R = 0.1 the threshold was higher in the SA state than in the AR state due to coarser grains and possibly the TRIP effect. In order to clarify the role of crack closure, experiments at R = 0.7 were done. The threshold in the SA state was still higher by 1 MPa center dot m(0.5). This effect was identified as crack tip shielding induced by phase transformation, an example of a non-closure shielding effect. Higher resistance to crack growth in the SA state was attributed to promoted martensitic transformation in non-favorable oriented grain families rather than thicker martensite layers in the crack path area. The conclusions were verified by experiments at R = 0.7 and temperature 150 degrees C > M-s which did not reveal any notable difference in thresholds. However, the threshold values were affected by the load-shedding gradient C = -d Delta K/da, which had to be equalized in both experimental setups inside and outside the furnace.

Description

Citation

Materials. 2021, vol. 14, issue 6, p. 1-13.
https://www.mdpi.com/1996-1944/14/6/1331

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO