Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh

dc.contributor.authorArregi Uribeetxebarria, Jon Andercs
dc.contributor.authorRinge, Friederikecs
dc.contributor.authorHajduček, Jancs
dc.contributor.authorGomonay, Olenacs
dc.contributor.authorMolnár, Tomášcs
dc.contributor.authorJaskowiec, Jiřícs
dc.contributor.authorUhlíř, Vojtěchcs
dc.coverage.issue3cs
dc.coverage.volume6cs
dc.date.accessioned2023-08-01T10:58:33Z
dc.date.available2023-08-01T10:58:33Z
dc.date.issued2023-06-01cs
dc.description.abstractMagnetic phase transition materials are relevant building blocks for developing green technologies such as magnetocaloric devices for solid-state refrigeration. Their integration into applications requires a good understanding and controllability of their properties at the micro- and nanoscale. Here, we present an optical microscopy study of the phase domains in FeRh across its antiferromagnetic-ferromagnetic phase transition. By tracking the phase-dependent optical reflectivity, we establish that phase domains have typical sizes of a few microns for relatively thick epitaxial films (200 nm), thus enabling visualization of domain nucleation, growth, and percolation processes in great detail. Phase domain growth preferentially occurs along the principal crystallographic axes of FeRh, which is a consequence of the elastic adaptation to both the substrate-induced stress and laterally heterogeneous strain distributions arising from the different unit cell volumes of the two coexisting phases. Furthermore, we demonstrate a magnetic-field-controlled directional growth of phase domains during both heating and cooling, which is predominantly linked to the local effect of magnetic dipolar fields created by the alignment of magnetic moments in the emerging (disappearing) FM phase fraction during heating (cooling). These findings highlight the importance of the magnetoelastic character of phase domains for enabling the local control of micro- and nanoscale phase separation patterns using magnetic fields or elastic stresses.en
dc.formattextcs
dc.format.extent1-15cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Physics: Materials. 2023, vol. 6, issue 3, p. 1-15.en
dc.identifier.doi10.1088/2515-7639/acce6fcs
dc.identifier.issn2515-7639cs
dc.identifier.orcid0000-0002-7376-2757cs
dc.identifier.orcid0000-0002-0512-6329cs
dc.identifier.other183953cs
dc.identifier.researcheridM-9810-2016cs
dc.identifier.researcheridE-6860-2011cs
dc.identifier.scopus55248382600cs
dc.identifier.urihttp://hdl.handle.net/11012/213682
dc.language.isoencs
dc.publisherIOP Publishingcs
dc.relation.ispartofJournal of Physics: Materialscs
dc.relation.urihttps://iopscience.iop.org/article/10.1088/2515-7639/acce6fcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2515-7639/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectfirst-order phase transitionen
dc.subjectFeRhen
dc.subjectmagnetic phase domainsen
dc.subjectmagnetostrictionen
dc.subjectoptical microscopyen
dc.titleMagnetic-field-controlled growth of magnetoelastic phase domains in FeRhen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183953en
sync.item.dbtypeVAVen
sync.item.insts2023.08.01 12:58:33en
sync.item.modts2023.08.01 12:20:15en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Nanomagnetismus a spintronikacs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Arregi_2023_J._Phys._Mater._6_034003.pdf
Size:
3.52 MB
Format:
Adobe Portable Document Format
Description:
Arregi_2023_J._Phys._Mater._6_034003.pdf