Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh
dc.contributor.author | Arregi Uribeetxebarria, Jon Ander | cs |
dc.contributor.author | Ringe, Friederike | cs |
dc.contributor.author | Hajduček, Jan | cs |
dc.contributor.author | Gomonay, Olena | cs |
dc.contributor.author | Molnár, Tomáš | cs |
dc.contributor.author | Jaskowiec, Jiří | cs |
dc.contributor.author | Uhlíř, Vojtěch | cs |
dc.coverage.issue | 3 | cs |
dc.coverage.volume | 6 | cs |
dc.date.accessioned | 2023-08-01T10:58:33Z | |
dc.date.available | 2023-08-01T10:58:33Z | |
dc.date.issued | 2023-06-01 | cs |
dc.description.abstract | Magnetic phase transition materials are relevant building blocks for developing green technologies such as magnetocaloric devices for solid-state refrigeration. Their integration into applications requires a good understanding and controllability of their properties at the micro- and nanoscale. Here, we present an optical microscopy study of the phase domains in FeRh across its antiferromagnetic-ferromagnetic phase transition. By tracking the phase-dependent optical reflectivity, we establish that phase domains have typical sizes of a few microns for relatively thick epitaxial films (200 nm), thus enabling visualization of domain nucleation, growth, and percolation processes in great detail. Phase domain growth preferentially occurs along the principal crystallographic axes of FeRh, which is a consequence of the elastic adaptation to both the substrate-induced stress and laterally heterogeneous strain distributions arising from the different unit cell volumes of the two coexisting phases. Furthermore, we demonstrate a magnetic-field-controlled directional growth of phase domains during both heating and cooling, which is predominantly linked to the local effect of magnetic dipolar fields created by the alignment of magnetic moments in the emerging (disappearing) FM phase fraction during heating (cooling). These findings highlight the importance of the magnetoelastic character of phase domains for enabling the local control of micro- and nanoscale phase separation patterns using magnetic fields or elastic stresses. | en |
dc.format | text | cs |
dc.format.extent | 1-15 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Journal of Physics: Materials. 2023, vol. 6, issue 3, p. 1-15. | en |
dc.identifier.doi | 10.1088/2515-7639/acce6f | cs |
dc.identifier.issn | 2515-7639 | cs |
dc.identifier.orcid | 0000-0002-7376-2757 | cs |
dc.identifier.orcid | 0000-0002-0512-6329 | cs |
dc.identifier.other | 183953 | cs |
dc.identifier.researcherid | M-9810-2016 | cs |
dc.identifier.researcherid | E-6860-2011 | cs |
dc.identifier.scopus | 55248382600 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/213682 | |
dc.language.iso | en | cs |
dc.publisher | IOP Publishing | cs |
dc.relation.ispartof | Journal of Physics: Materials | cs |
dc.relation.uri | https://iopscience.iop.org/article/10.1088/2515-7639/acce6f | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2515-7639/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | first-order phase transition | en |
dc.subject | FeRh | en |
dc.subject | magnetic phase domains | en |
dc.subject | magnetostriction | en |
dc.subject | optical microscopy | en |
dc.title | Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-183953 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2023.08.01 12:58:33 | en |
sync.item.modts | 2023.08.01 12:20:15 | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Nanomagnetismus a spintronika | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Arregi_2023_J._Phys._Mater._6_034003.pdf
- Size:
- 3.52 MB
- Format:
- Adobe Portable Document Format
- Description:
- Arregi_2023_J._Phys._Mater._6_034003.pdf