Biometric Fingerprint Liveness Detection
but.event.date | 23.04.2015 | cs |
but.event.title | Student EEICT 2015 | cs |
dc.contributor.author | Váňa, T. | |
dc.date.accessioned | 2015-08-25T08:42:59Z | |
dc.date.available | 2015-08-25T08:42:59Z | |
dc.date.issued | 2015 | cs |
dc.description.abstract | This paper deals with biometric fingerprint liveness detection. A software-based liveness detection approach using neural network is proposed. To distinguish between live and fake samples, three image quality features extracted from one image are used. The algorithm is tested on LivDet database comprising real and fake images acquired with three sensors. | en |
dc.format | text | cs |
dc.format.extent | 258-260 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 21st Conference STUDENT EEICT 2015. s. 258-260. ISBN 978-80-214-5148-3 | cs |
dc.identifier.isbn | 978-80-214-5148-3 | |
dc.identifier.uri | http://hdl.handle.net/11012/42994 | |
dc.language.iso | cs | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 21st Conference STUDENT EEICT 2015 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Biometric system | en |
dc.subject | fingerprint | en |
dc.subject | liveness detection | en |
dc.subject | LivDet database | en |
dc.subject | neural network | en |
dc.title | Biometric Fingerprint Liveness Detection | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |