Geometrické řízení hadům podobných robotů

but.committeeprof. RNDr. Josef Šlapal, CSc. (předseda) prof. RNDr. Miloslav Druckmüller, CSc. (místopředseda) doc. Ing. Luděk Nechvátal, Ph.D. (člen) doc. RNDr. Jiří Tomáš, Dr. (člen) prof. Mgr. Pavel Řehák, Ph.D. (člen) Prof. Bruno Rubino (člen) Assoc. Prof. Matteo Colangeli (člen) Assoc. Prof. Massimiliano Giuli (člen)cs
but.defenceStudent introduced his diploma thesis to the committee members and explained the fundaments of his topic called Geometrically controlled snake-like robot model. He answered the oponent's questions satisfactorily.cs
but.jazykangličtina (English)
but.programAplikované vědy v inženýrstvícs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorVašík, Petren
dc.contributor.authorShehadeh, Mhd Alien
dc.contributor.refereeNávrat, Alešen
dc.date.created2020cs
dc.description.abstractThis master’s thesis describes equations of motion for dynamic model of nonholonomic constrained system, namely the trident robotic snakes. The model is studied in the form of Lagrange's equations and D’Alembert’s principle is applied. Actually this thesis is a continuation of the study going at VUT about the simulations of non-holonomic mechanisms, specifically robotic snakes. The kinematics model was well-examined in the work of of Byrtus, Roman and Vechetová, Jana. So here we provide equations of motion and address the motion planning problem regarding dynamics of the trident snake equipped with active joints through basic examples and propose a feedback linearization algorithm.en
dc.description.abstractThis master’s thesis describes equations of motion for dynamic model of nonholonomic constrained system, namely the trident robotic snakes. The model is studied in the form of Lagrange's equations and D’Alembert’s principle is applied. Actually this thesis is a continuation of the study going at VUT about the simulations of non-holonomic mechanisms, specifically robotic snakes. The kinematics model was well-examined in the work of of Byrtus, Roman and Vechetová, Jana. So here we provide equations of motion and address the motion planning problem regarding dynamics of the trident snake equipped with active joints through basic examples and propose a feedback linearization algorithm.cs
dc.description.markAcs
dc.identifier.citationSHEHADEH, M. Geometrické řízení hadům podobných robotů [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2020.cs
dc.identifier.other124856cs
dc.identifier.urihttp://hdl.handle.net/11012/192344
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectGeometric control theoryen
dc.subjectnon-holonomic mechanicsen
dc.subjectmotion planningen
dc.subjectLie algebraen
dc.subjectLagrangian equations of motionen
dc.subjectPfaffian constraintsen
dc.subjecttrident snake roboten
dc.subjectdynamic model.en
dc.subjectGeometric control theorycs
dc.subjectnon-holonomic mechanicscs
dc.subjectmotion planningcs
dc.subjectLie algebracs
dc.subjectLagrangian equations of motioncs
dc.subjectPfaffian constraintscs
dc.subjecttrident snake robotcs
dc.subjectdynamic model.cs
dc.titleGeometrické řízení hadům podobných robotůen
dc.title.alternativeGeometrically controlled snake-like robot modelcs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2020-07-15cs
dcterms.modified2020-07-22-06:54:56cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid124856en
sync.item.dbtypeZPen
sync.item.insts2025.03.27 08:52:22en
sync.item.modts2025.01.15 13:05:07en
thesis.disciplineMatematické inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.levelInženýrskýcs
thesis.nameIng.cs
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
3.59 MB
Format:
Adobe Portable Document Format
Description:
final-thesis.pdf
Loading...
Thumbnail Image
Name:
review_124856.html
Size:
7.96 KB
Format:
Hypertext Markup Language
Description:
file review_124856.html
Collections