Investigating the thickness-effect of free-standing high aspect-ratio TiO2 nanotube layers on microwave-photoresponse using planar microwave resonators

dc.contributor.authorAlijani, Mahnazcs
dc.contributor.authorWiltshire, Benjamin D.cs
dc.contributor.authorSopha, Hanna Ingridcs
dc.contributor.authorSarpanah, Zahracs
dc.contributor.authorMistrík, Jancs
dc.contributor.authorHromádko, Luděkcs
dc.contributor.authorZarifi, Mohammad H.cs
dc.contributor.authorMacák, Jancs
dc.coverage.issue1cs
dc.coverage.volume32cs
dc.date.issued2023-06-01cs
dc.description.abstractOne-dimensional TiO2 nanotube (TNT) layers are a promising candidate for UV detection due to their distinctive anisotropic geometry which is effective for light harvesting and rapid carrier transport. Here, the photosensitivity efficiency of TNT layers with various thicknesses of 15, 50, 80, and 110 mu m was utilized at a microwave frequency regime by modeling and experimentally. A planar microwave split ring resonator (PMSRR) was designed and fabricated to operate at -8 GHz to study TNT layers by monitoring the scattering parameter (S21) of the PMSRR under a constant UV irradiation power of -96.4 mu W/cm2. According to the results, the 80 mu m thick TNT layers demonstrated the highest resonant amplitude variation for the customized PMSRR. The change of the resonant amplitude was mainly attributed to the conductivity variation contributed by perturbation of trapped electron concentration, as the dominant factor under UV illumination, and their electromagnetic wave interaction. The main advantage of the proposed method of PMSRR for microwave photosensitivity monitoring over the conventional direct current (DC) conductivity measurements is to eliminate the effect of contact resistance between the TNT layers and metal electrodes utilizing the contactless aspect of wave interactions with the TNT layers at microwave regime to perform electrode-less measurements.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationApplied Materials Today. 2023, vol. 32, issue 1, p. 1-10.en
dc.identifier.doi10.1016/j.apmt.2023.101832cs
dc.identifier.issn2352-9407cs
dc.identifier.orcid0000-0003-1117-9854cs
dc.identifier.orcid0000-0001-7091-3022cs
dc.identifier.other183947cs
dc.identifier.researcheridAAC-9943-2020cs
dc.identifier.scopus57188136600cs
dc.identifier.scopus34872408700cs
dc.identifier.scopus55655855500cs
dc.identifier.urihttp://hdl.handle.net/11012/213686
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofApplied Materials Todaycs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2352940723001026cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2352-9407/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectPlanar microwave resonatoren
dc.subjectTiO2en
dc.subjectNanotubeen
dc.subjectReal-time microwave sensingen
dc.subjectUV detectionen
dc.titleInvestigating the thickness-effect of free-standing high aspect-ratio TiO2 nanotube layers on microwave-photoresponse using planar microwave resonatorsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183947en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:51:19en
sync.item.modts2025.01.17 16:41:37en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2352940723001026main.pdf
Size:
9.15 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S2352940723001026main.pdf