Travel Time Prediction

but.event.date27.04.2017cs
but.event.titleStudent EEICT 2017cs
dc.contributor.authorMudroch, Andrej
dc.date.accessioned2020-05-07T09:40:29Z
dc.date.available2020-05-07T09:40:29Z
dc.date.issued2017cs
dc.description.abstractThis paper discusses the methods of travel time prediction based on the usage of machine learning and historical data. The developed prediction models are described as well as the data sources which were used as the input of the prediction models. Finally, the comparison of the models‘ performance is shown, providing proof the developed models have ability to outperform the widely used model based on instantaneous travel time that is not using statistical learning.en
dc.formattextcs
dc.format.extent293-295cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 23st Conference STUDENT EEICT 2017. s. 293-295. ISBN 978-80-214-5496-5cs
dc.identifier.isbn978-80-214-5496-5
dc.identifier.urihttp://hdl.handle.net/11012/187111
dc.language.isoskcs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 23st Conference STUDENT EEICT 2017en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjecttravel timeen
dc.subjectpredictionen
dc.subjectregressionen
dc.titleTravel Time Predictionen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
293_eeict2017.pdf
Size:
620.31 KB
Format:
Adobe Portable Document Format
Description: