Travel Time Prediction
but.event.date | 27.04.2017 | cs |
but.event.title | Student EEICT 2017 | cs |
dc.contributor.author | Mudroch, Andrej | |
dc.date.accessioned | 2020-05-07T09:40:29Z | |
dc.date.available | 2020-05-07T09:40:29Z | |
dc.date.issued | 2017 | cs |
dc.description.abstract | This paper discusses the methods of travel time prediction based on the usage of machine learning and historical data. The developed prediction models are described as well as the data sources which were used as the input of the prediction models. Finally, the comparison of the models‘ performance is shown, providing proof the developed models have ability to outperform the widely used model based on instantaneous travel time that is not using statistical learning. | en |
dc.format | text | cs |
dc.format.extent | 293-295 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 23st Conference STUDENT EEICT 2017. s. 293-295. ISBN 978-80-214-5496-5 | cs |
dc.identifier.isbn | 978-80-214-5496-5 | |
dc.identifier.uri | http://hdl.handle.net/11012/187111 | |
dc.language.iso | sk | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 23st Conference STUDENT EEICT 2017 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | travel time | en |
dc.subject | prediction | en |
dc.subject | regression | en |
dc.title | Travel Time Prediction | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 293_eeict2017.pdf
- Size:
- 620.31 KB
- Format:
- Adobe Portable Document Format
- Description: