Comparison of Direct and Indirect Identification of a Human Driver Model

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorČelko, Jakub
dc.date.accessioned2025-07-30T10:03:12Z
dc.date.available2025-07-30T10:03:12Z
dc.date.issued2025cs
dc.description.abstractThis paper focuses on recent advancements in the identification of human dynamics in vehicle steering tasks. The field of human driver identification encompasses a plethora of distinct models and methods for parameter identification. This study experimentally compares the most prominent identification approaches in terms of model efficiency (ME). The advantages of indirect identification methods are theoretically discussed and experimentally verified using a dataset comprising extensive measurements from 23 individual drivers. Both theoretical analysis and numerical evaluation of ME corroborate that the indirect identification method proposed by the author is superior to the direct methods employed in many previous studies. The suggested approach is expected to provide a more reliable estimate of drivers’ dynamic parameters, which are desirable for further statistical analyses or machine learning applications in this research domain.en
dc.formattextcs
dc.format.extent236-240cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers. s. 236-240. ISBN 978-80-214-6320-2cs
dc.identifier.doi10.13164/eeict.2025.236
dc.identifier.isbn978-80-214-6320-2
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/255360
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectcross-validationen
dc.subjectdriver behaviouren
dc.subjectidentificationen
dc.subjectmodelen
dc.subjectsimulatoren
dc.subjectsteering controlen
dc.titleComparison of Direct and Indirect Identification of a Human Driver Modelen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
236-Celko.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format