Semi-Automatic Segmentation Of On-Line Handwriting
but.event.date | 25.04.2019 | cs |
but.event.title | Student EEICT 2019 | cs |
dc.contributor.author | Gavenčiak, Michal | |
dc.date.accessioned | 2020-04-16T07:19:26Z | |
dc.date.available | 2020-04-16T07:19:26Z | |
dc.date.issued | 2019 | cs |
dc.description.abstract | This paper deals with the automation of digital trace data segmentation. The data are obtained from a digitizing tablet and are then subjected to handwriting analysis, providing quantified information about a person’s handwriting, which might help in the diagnosis of handwriting difficulties. In order to successfully analyze the data, they must be segmented by individual handwriting exercise. Implementation of a python-based program with a GUI is described along with its basic functionality. | en |
dc.format | text | cs |
dc.format.extent | 54-57 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 25st Conference STUDENT EEICT 2019. s. 54-57. ISBN 978-80-214-5735-5 | cs |
dc.identifier.isbn | 978-80-214-5735-5 | |
dc.identifier.uri | http://hdl.handle.net/11012/186616 | |
dc.language.iso | cs | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 25st Conference STUDENT EEICT 2019 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Handwriting difficulties | en |
dc.subject | graphical user interface | en |
dc.subject | python | en |
dc.subject | online handwriting | en |
dc.title | Semi-Automatic Segmentation Of On-Line Handwriting | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 54_eeict2019.pdf
- Size:
- 701.81 KB
- Format:
- Adobe Portable Document Format
- Description: