Detekce dopravních značek a semaforů

Loading...
Thumbnail Image

Date

Authors

Chocholatý, Tomáš

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Práce se zabývá detekcí dopravních značek a semaforů v obraze s využitím konvolučních neuronových sítí. Cílem je vytvoření vhodného detektoru pro detekci a rozpoznání dopravního značení v reálném provozu. Za účelem trénování konvolučních neuronových sítí byly vytvořeny vhodné datové sady, které se skládají ze syntetické i reálné datové sady. Pro syntetickou datovou sadu byl vytvořen generátor, který simuluje různé deformace značek. Vyhodnocení kvality detekce je prováděno pomocí vlastního programu pro  kvantitativní vyhodnocování. Podařilo se dosáhnout úspěšnosti 84\% detekovaných značek nad vlastní testovací datovou sadou. Výsledky umožňují zjistit důležitost zastoupení reálné či syntetické datové sady v trénovací sadě a vliv jednotlivých deformací syntetické datové sady na konečnou kvalitu detekce.
The thesis focuses on traffic sign detection and traffic lights detection in view with utilization convolution neural network. The goal is create suitable detector for detection and classification traffic sign in real traffic. For training of convolution neural network were created appropriate datasets, that contains synthetic and real dataset. For synthetic dataset was create generator, that can simulated different deformation of traffic signs. Evaluation is done by own program for quantitative evaluation. The detection rate successfully detected signs is 89\% over own test dataset. The results allow to find out importance of representation real or synthetic dataset in training dataset and influence individual deformations synthetic dataset for final detection quality.

Description

Citation

CHOCHOLATÝ, T. Detekce dopravních značek a semaforů [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2019.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Dr. Ing. Pavel Zemčík, dr. h. c. (předseda) doc. Mgr. Adam Rogalewicz, Ph.D. (místopředseda) Ing. Michal Fusek, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen)

Date of acceptance

2019-06-10

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázku oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A. Otázky u obhajoby: Použitá architektura YOLOv3-tiny může dosáhnout až 220 FPS. Vaše řešení dosahuje 18 FPS. Jakého nejvyššího FPS byste mohl dosáhnou při možnosti využít lepší hardware? Bylo by možné algoritmus paralelizovat?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO