Context Out Classifier

dc.contributor.authorHrebik, Radek
dc.contributor.authorKukal, Jaromir
dc.coverage.issue1cs
dc.coverage.volume24cs
dc.date.accessioned2019-06-26T10:18:36Z
dc.date.available2019-06-26T10:18:36Z
dc.date.issued2018-06-01cs
dc.description.abstractNovel context out learning approach is discussed as possibility of using simple classifiers which is background of hidden class system. There are two ways how to perform final classification. Having a lot of hidden classes we can build their unions using binary optimization task. Resulting system has the best possible sensitivity over all output classes. Another way is to perform second level linear classification as referential approach. The presented techniques are demonstrated on traditional iris flower task.en
dc.formattextcs
dc.format.extent101-106cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2018 vol. 24, č. 1, s. 101-106. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2018.1.101en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/179230
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/29cs
dc.rights.accessopenAccessen
dc.subjectclassificationen
dc.subjectbinary programmingen
dc.subjectcluster unionen
dc.subjectimperfect learningen
dc.titleContext Out Classifieren
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
29-Article Text-72-1-10-20190218.pdf
Size:
521.65 KB
Format:
Adobe Portable Document Format
Description:
Collections