The Influence of Crystalline Admixtures on the Properties and Microstructure of Mortar-Containing By-Products

Loading...
Thumbnail Image

Authors

Hodul, Jakub
Žižková, Nikol
Borg, Ruben Paul

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Crystalline admixtures and industrial by-products can be used in cement-based materials in order to improve their mechanical properties. The research examined long-term curing and the exposure to environmental actions of polymer–cement mortars with crystalline admixture (CA) and different by-products, including Bengisa fly ash and Globigerina limestone waste filler. The by-products were introduced as a percentage replacement of the cement. A crystallization additive was also added to the mixtures in order to monitor the improvement in durability properties. The mechanical properties of the mortar were assessed, with 20% replacement of cement with fly ash resulting in the highest compressive strength after 540 days. The performance was analyzed with respect to various properties including permeable porosity, capillary suction, rapid chloride ion penetration and chloride migration coefficient. It was noted that the addition of fly ash and crystalline admixture significantly reduced the chloride ion penetration into the structure of the polymer cement mortar, resulting in improved durability. A microstructure investigation was conducted on the samples through Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) . Crystals forming through the crystalline admixture in the porous structure of the material were clearly observed, contributing to the improved properties of the cement-based polymer mortar
Crystalline admixtures and industrial by-products can be used in cement-based materials in order to improve their mechanical properties. The research examined long-term curing and the exposure to environmental actions of polymer–cement mortars with crystalline admixture (CA) and different by-products, including Bengisa fly ash and Globigerina limestone waste filler. The by-products were introduced as a percentage replacement of the cement. A crystallization additive was also added to the mixtures in order to monitor the improvement in durability properties. The mechanical properties of the mortar were assessed, with 20% replacement of cement with fly ash resulting in the highest compressive strength after 540 days. The performance was analyzed with respect to various properties including permeable porosity, capillary suction, rapid chloride ion penetration and chloride migration coefficient. It was noted that the addition of fly ash and crystalline admixture significantly reduced the chloride ion penetration into the structure of the polymer cement mortar, resulting in improved durability. A microstructure investigation was conducted on the samples through Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) . Crystals forming through the crystalline admixture in the porous structure of the material were clearly observed, contributing to the improved properties of the cement-based polymer mortar

Description

Citation

Buildings. 2020, vol. 10, issue 9, p. 1-18.
https://www.mdpi.com/2075-5309/10/9/146

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO