Anisotropic Double Phase Elliptic Inclusion Systems with Logarithmic Perturbation and Multivalued Convections
dc.contributor.author | Zeng, Shengda | cs |
dc.contributor.author | Lu, Yasi | cs |
dc.contributor.author | Radulescu, Vicentiu | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 92 | cs |
dc.date.accessioned | 2025-07-16T13:56:09Z | |
dc.date.available | 2025-07-16T13:56:09Z | |
dc.date.issued | 2025-06-24 | cs |
dc.description.abstract | In this paper, we investigate a class of variable exponent double phase elliptic inclusion systems involving anisotropic partial differential operators with logarithmic perturbation as well as two fully coupled multivalued terms, one of them is defined in the domain and the other is defined on the boundary, respectively. Firstly, under the suitable coercive conditions, the existence of a weak solution for the double phase elliptic inclusion systems is verified via applying a surjectivity theorem concerning multivalued pseudomonotone operators. Then, when the elliptic inclusion system is considered in non-coercive framework, we employ the sub-supersolution method to establish the existence and compactness results. Finally, we deliver several solvability properties of some special cases with respect to the elliptic inclusion system under consideration via constructing proper sub- and super-solutions. | en |
dc.format | text | cs |
dc.format.extent | 1-41 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | APPLIED MATHEMATICS AND OPTIMIZATION. 2025, vol. 92, issue 1, p. 1-41. | en |
dc.identifier.doi | 10.1007/s00245-025-10278-y | cs |
dc.identifier.issn | 0095-4616 | cs |
dc.identifier.orcid | 0000-0003-4615-5537 | cs |
dc.identifier.other | 198264 | cs |
dc.identifier.researcherid | A-1503-2012 | cs |
dc.identifier.scopus | 35608668800 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/255163 | |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartof | APPLIED MATHEMATICS AND OPTIMIZATION | cs |
dc.relation.uri | https://link.springer.com/article/10.1007/s00245-025-10278-y | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0095-4616/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Elliptic inclusion systems | en |
dc.subject | Existence and compactness property | en |
dc.subject | Multivalued convection term | en |
dc.subject | Subsolution and supersolution | en |
dc.subject | Surjectivity theorem | en |
dc.subject | Variable exponents double phase operator with logarithmic perturbation | en |
dc.title | Anisotropic Double Phase Elliptic Inclusion Systems with Logarithmic Perturbation and Multivalued Convections | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-198264 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.07.16 15:56:09 | en |
sync.item.modts | 2025.07.16 15:32:54 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s0024502510278y.pdf
- Size:
- 8.5 MB
- Format:
- Adobe Portable Document Format
- Description:
- file s0024502510278y.pdf